Feature | May 28, 2015

Researchers Create "CyberHeart" Platform for Advanced Medical Device Development

Project supported by a $4.2 million 5-year NSF grant

CyberHeart, Stony Brook, NSF grant, $4.2 million, Scott Smolka

These images using the CyberHeart platform capture highly detailed multi-scale modeling and simulation of electrical patterns in the heart (spiral waves) representative of potentially fatal cardiac arrhythmias. Image courtesy of Stony Brook University.

May 28, 2015 — A virtual-heart platform proposed by Stony Brook University researchers and colleagues has received funding from the National Science Foundation (NSF) in the amount of $4.2 million over five years. The platform was designed to improve and accelerate medical-device development and testing.

The “Cyberheart” project, led by Scott Smolka, a professor of computer science at Stony Brook University, is part of the NSF’s center-scale initiative to advance the state-of-the-art in cyber-physical systems (CPS) — engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Often called the “Internet of Things,” CPS enable capabilities that go beyond the embedded systems of today.

CPS such as wearable sensors and implantable devices are already being used to assess health, improve quality of life, provide cost-effective care, and potentially speed up disease diagnosis and prevention.

The Stony Brook-led project includes collaborators from seven leading universities and centers working together to develop far more realistic cardiac and device models than currently exist. This "CyberHeart" platform can be used to test and validate medical devices faster and at a far lower cost than existing methods. CyberHeart also can be used to design optimal, patient-specific device therapies, thereby lowering the risk to the patient.

"Innovative 'virtual' design methodologies for implantable cardiac medical devices will speed device development and yield safer, more effective devices and device-based therapies, than is currently possible," said Smolka. "We believe that our coordinated, multi-disciplinary approach, which balances theoretical, experimental and practical concerns, will yield transformational results in medical-device design and foundations of cyber-physical system verification.”

The group's approach combines patient-specific computational models of heart dynamics with advanced mathematical techniques for analyzing how these models interact with medical devices. The analytical techniques can be used to detect potential flaws in device behavior early on during the device-design phase, before animal and human trials begin. They also can be used in a clinical setting to optimize device settings on a patient-by-patient basis before devices are implanted.

For more information: www.stonybrook.edu

Related Content

Biotronik Studies Demonstrate Efficacy of Minimizing Metal Burden in SFA Therapy
News | Stents Bare Metal| September 22, 2017
Physicians demonstrated that reducing metal burden in superficial femoral artery (SFA) therapy could effectively reduce...
Fujitsu VR Heart Simulator Viewer Features in University of Tokyo Lecture

Stereoscopic view with a heart viewer. Image courtesy of Fujitsu.

News | Simulators| September 21, 2017
September 21, 2017 — Fujitsu announced that the University of Tokyo recently used...
Edwards Inspiris Resilia Valve Receives FDA Approval
News | Heart Valve Technology| September 21, 2017
Edwards Lifesciences Corp. recently received U.S. Food and Drug Administration (FDA) approval for its Inspiris Resilia...
MyoKardia Presents Additional Positive Data From Phase 2 PIONEER-HCM Study at HFSA 2017
News | Heart Failure| September 21, 2017
MyoKardia Inc. announced that additional positive data from the first patient cohort of its Phase 2 PIONEER-HCM study...
DISRUPT BTK Study Shows Positive Results With Lithoplasty in Calcified Lesions Below the Knee
News | Peripheral Artery Disease (PAD)| September 20, 2017
Shockwave Medical reported positive results from the DISRUPT BTK Study, which were presented at the annual...
Corindus Announces First Patient Enrolled in PRECISION GRX Registry
News | Robotic Systems| September 18, 2017
September 18, 2017 — Corindus Vascular Robotics Inc.
Two-Year ILLUMENATE Trial Data Demonstrate Efficacy of Stellarex Drug-Coated Balloon
News | Drug-Eluting Balloons| September 18, 2017
Philips announced the two-year results from the ILLUMENATE European randomized clinical trial (EU RCT) demonstrating...
Sentinel Cerebral Protection System Significantly Reduces Stroke and Mortality in TAVR
News | Embolic Protection Devices| September 18, 2017
September 18, 2017 – Claret Medical announced publication of a new study in the...
Marijuana Associated With Three-Fold Risk of Death From Hypertension
News | Hypertension| September 14, 2017
Marijuana use is associated with a three-fold risk of death from hypertension, according to research published recently...
Peter Schneider, M.D. presents late breaking clinical trial results at VIVA 17 in Las Vegas. Panelists (l to r) Krishna Rocha-Singh, M.D., Sean Lyden, M.D., John Kaufman, M.D., Donna Buckley, M.D.

Peter Schneider, M.D. presents late breaking clinical trial results at VIVA 17 in Las Vegas. Panelists (l to r) Krishna Rocha-Singh, M.D., Sean Lyden, M.D., John Kaufman, M.D., Donna Buckley, M.D.

Feature | Cath Lab| September 14, 2017
September 14, 2017 — Here are quick summaries for all the key late-breaking vascular and endovascular clinical trials
Overlay Init