News | August 19, 2014

Class 1 Recall Initiated for Diamondback 360 Peripheral Orbital Atherectomy System

Cardiovascular Systems said sheath may fracture during use

Cardiovascular Systems is recalling certain lots of the Diamondback 360 Peripheral Orbital Atherectomy System, because they may contain defective saline sheaths that could fracture during use. If this happens, fragments of the sheath could possibly block blood vessels. The U.S. Food and Drug Administration (FDA) said as of this week, there are no reports of patient injuries to date.
 
The model number for the system in DPB-125MICRO145 (Part number 7-10003). The affected lot numbers include: 100573, 100575, 100674, 100676, 100678 and 100680. The vendor said 94 affected devices were manufactured from May 8, 2014 to May 9, 2014, and 48 were distributed from May 16, 2014 to May 20, 2014.
 
The Diamondback 360 Peripheral Orbital Atherectomy System is a high-speed cutting tool inserted via a catheter through the skin into a patient’s blood vessel. The system is used to reestablish blood flow in narrowed arteries or arterio-venous dialysis shunts.
 
Cardiovascular Systems sent an “Urgent Medical Device Recall” letter to their customers May 27. The letter identified the problem and the specific products affected by the recall. The letter advises customers to:
Remove affected devices from service.
Complete and return a “Customer Acknowledgement Form.”
Return affected devices to Cardiovascular Systems
For more information, contact Cardiovascular Systems Customer Service at 877.274.0901.
 
For more information: www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm410527.htm
 

Related Content

Mobility May Predict Elderly Heart Attack Survivors' Repeat Hospital Stays
News | Cath Lab | April 23, 2019
Determining which elderly heart attack patients take longer to stand from a seated position and walk across a room may...
FDA Releases New Guidance on Medical Devices Containing Nitinol
News | Cath Lab | April 18, 2019
April 18, 2019 — The U.S.
Angiography shows a stenotic lesion in the mid right coronary artery, undilatable by standard high-pressure balloon angioplasty (inset, arrowheads). (B) Optical coherence tomography (OCT) cross-sectional (top) and longitudinal (bottom) images acquired before IVL and coregistered to the OCT lens (arrow in A) demonstrate severe near-circumferential calcification in the area of the stenosis. (C) Angiography demonstrates improvement in the area of stenosis after IVL lithoplasty.

Figure 2: Angiography demonstrates a stenotic lesion in the mid right coronary artery, undilatable by standard high-pressure balloon angioplasty (inset, arrowheads). (B) Optical coherence tomography (OCT) cross-sectional (top) and longitudinal (bottom) images acquired before IVL and coregistered to the OCT lens (arrow in A) demonstrate severe near-circumferential calcification (double-headed arrow) in the area of the stenosis. (C) Angiography demonstrates improvement in the area of stenosis after IVL (inset; note the cavitation bubbles generated by IVL [black arrows]). (D) OCT cross-sectional (top) and longitudinal (bottom) images acquired post-IVL and coregistered to the OCT lens (white arrow in C) demonstrate multiple calcium fractures and large acute luminal gain. (E) Angiography demonstrates complete stent expansion with the semicompliant stent balloon (inset) without the need for high-pressure noncompliant balloon inflation. (F) OCT cross-sectional (top) and longitudinal (bottom) images acquired post-stenting and coregistered to the OCT lens (arrow in E) demonstrate further fracture displacement (arrow), with additional increase in the acute area gain (5.17 mm2), resulting in full stent expansion and minimal malapposition.

Feature | Cath Lab | April 15, 2019 | Dean Kereiakes, M.D., FACC, FSCAI, and Jonathan Hill, M.D., DISRUPT CAD III Co-Principal Investigators
Over the last 40 years, despite multiple advancements in percutaneous coronary interventions, calcified lesions remai
BIOTRONIK’s PK Papyrus covered coronary stent. The stent ius used in emergency coronary artery dissections to repair the vessel wall.
Technology | Cath Lab | April 15, 2019
April 15, 2019 — Biotronik began its U.S.
Providing Follow-Up Care After Heart Attack Helps Reduce Readmissions, Deaths
News | Cath Lab | April 09, 2019
A program designed to help heart attack patients with the transition from hospital to outpatient care can reduce...
TherOx Receives FDA Approval for SuperSaturated Oxygen Therapy
Technology | Cath Lab | April 08, 2019
TherOx Inc. announced that the U.S. Food and Drug Administration (FDA) granted premarket approval for its...
Cook Medical Recalls Transseptal Needle Due to Risk of Detached Plastic Fragments
News | Cath Lab | March 20, 2019
March 20, 2019 — Cook Medical is recalling one lot of its...
DABRA Excimer Laser System Demonstrates Success in Treating PAD
News | Cath Lab | February 27, 2019
Ra Medical Systems Inc. announced a 98 percent success rate in the results from a 52-patient study using the company’s...
Edwards Lifesciences Recalls Swan-Ganz hemodynamic catheters.
Feature | Cath Lab | February 06, 2019
Edwards Lifesciences is recalling its 131F7, 131F7J, 131F7P, 131VF7P, 151F7 Swan-Ganz Thermodilution Catheters manufa
Scientists Discover New Heart Attack Repair Pathway

A macrophage immune cell, with a dead cell (pink) that has been eaten, and a mitochondrion (green) between the dead cell and the nucleus. The study’s findings indicate that what the macrophage eats is taken up by the mitochondrion, which in turn communicates with the nucleus to activate the macrophage to promote tissue repair. Image courtesy of Northwestern Medicine.

News | Cath Lab | January 30, 2019
Northwestern Medicine scientists have discovered a novel signaling pathway that promotes healing after a heart attack....
Overlay Init