News | Heart Valve Technology | March 18, 2016

CorMatrix Cardiovascular Treats First Patient in Tricuspid Valve U.S. Clinical Study

Tissue-engineered valve will be implanted in up to 15 patients at eight centers across the country

CorMatrix Cardiovascular, ECM Tricuspid Valve, first study patient, Franciscan St. Francis Health

CorMatrix Cardiovascular's Extracellular Matrix (ECM) material, the basis for the tricuspid valve

March 18, 2016 — CorMatrix Cardiovascular Inc. announced treatment of the first patient to receive their tissue-engineered regenerative CorMatrix ECM (Extracellular Matrix) Tricuspid Valve. The operation was performed by Marc Gerdisch, M.D., FACS, FACC, chief of cardiovascular and thoracic surgery at Franciscan St. Francis Health in Indianapolis.

The company received approval for the CorMatrix ECM Tricuspid Heart Valve as an early feasibility study approved through the U.S. Food and Drug Administration (FDA) investigational device exemption (IDE). The trial will demonstrate proof of principle and initial clinical safety of the CorMatrix ECM Tricuspid Valve at eight U.S. centers.

The study will enroll up to 15 patients who are candidates for the surgical management of tricuspid valve disease not amenable to annuloplasty or repair; including tricuspid valve disease secondary to congenital heart disease in pediatric patients (age < 21) and adult patients with tricuspid endocarditis.

In addition to Franciscan St. Francis Health, other clinics participating in the study include the Mayo Clinic (Rochester, Minn.), Cincinnati Children’s Hospital, Cleveland Clinic, Duke University (Durham, N.C.), Florida Hospital (Orlando, Fla.), Nationwide Children’s Hospital (Columbus, Ohio), and the University of Iowa (Iowa City, Iowa). The principal investigator for the study is Joseph Dearani, M.D., chair, Division of Cardiovascular Surgery at the Mayo Clinic.

Gerdisch is the first surgeon globally to use the tricuspid device in the study. “The past decade has seen an enormous expansion of research in, and subsequently understanding of, extracellular matrix. We have been using CorMatrix for 8 years with remarkable success in reconstructing complex structures of the heart and blood vessels. In 2014, we published the North American experience with complete CorMatrix tubular reconstruction of the tricuspid valve,” said Gerdisch. “Given the remarkable adaptability and regenerative properties of CorMatrix, we recognized the dramatic effect this could have on surgery for tricuspid valve pathology, especially for younger patients. Furthermore, it would serve as a platform for engineering other heart valves. This first FDA study enrollment is a substantial step toward patients avoiding synthetic replacement valves by having the opportunity to regrow their own.”

The CorMatrix ECM Tricuspid Valve is a flexible, unstented valve constructed from the CorMatrix ECM material. The device is specifically designed to function immediately after implantation as a competent heart valve and to perform efficiently at lower transvalvular pressure gradients as experienced by the normal tricuspid valve. CorMatrix’s unique bioscaffold characteristics enable native cells to infiltrate and remodel over time into a fully functioning tricuspid valve. The implanted, remodeled valve is comprised of the patient’s own tissue and leaves behind no “foreign body” as is the case with all mechanical or prosthetic valve designs. In addition, the device does not require the long-term anticoagulation therapy associated with the implant of mechanical valves.

Other unique features of the device include: mechanical resemblance to the native tricuspid valve; conformity of the normal annulus rather than a stiff prosthetic; maintenance of the subvalvular connection to the right ventricle; ability of the device to become lined with native endothelium during remodeling; and ease of surgical implantation. In an ovine model, tubular SIS-ECM TV bioprostheses demonstrated “growth”.

Valve diseases affect up to 5 million Americans each year and while some types are not serious, others can lead to major complications, including death. When valve disease is severe, it may be necessary to repair or replace the diseased valve. There are no valves on the market that have been specifically designed for adult and pediatric tricuspid replacement. Lack of availability of FDA-approved products for the tricuspid valve has resulted in non-indicated devices being used to replace irreparable valves in adult and younger patients. In pediatric patients, some are left with limited or no surgical repair options.

For more information:

Related Content

New FDA Proposed Rule Alters Informed Consent for Clinical Studies
News | Cardiovascular Clinical Studies | November 19, 2018
The U.S. Food and Drug Administration (FDA) is proposing to add an exception to informed consent requirements for...
A key slide from Elnabawi's presentation, showing cardiac CT plaque evaluations, showing the impact of psoriasis medication on coronary plaques at baseline and one year of treatment. It shows a reversal of vulnerable plaque development. #SCAI, #SCAI2018

A key slide from Elnabawi's presentation, showing cardiac CT plaque evaluations, showing the impact of psoriasis medication on coronary plaques at baseline and one year of treatment. It shows a reversal of vulnerable plaque development.  

Feature | Cardiovascular Clinical Studies | May 14, 2018
May 14, 2018 – New clinical evidance shows common therapy options for psoriasis (PSO), a chronic inflammatory skin di
Intravenous Drug Use is Causing Rise in Heart Valve Infections, Healthcare Costs. #SCAI, #SCAI2018
News | Cardiovascular Clinical Studies | May 14, 2018
May 14, 2018 — The opioid drug epidemic is impacting cardiology, with a new study finding the number of patients hosp
Patient Enrollment Completed in U.S. IDE Study of THERMOCOOL SMARTTOUCH SF Catheter
News | Cardiovascular Clinical Studies | March 15, 2018
March 15, 2018 –  Johnson & Johnson Medical Devices Companies announced today that Biosense Webster, Inc., who wo
Lexington Begins HeartSentry Clinical Trial
News | Cardiovascular Clinical Studies | February 20, 2018
February 20, 2018 – Lexington Biosciences, Inc., a development-stage medical device company, announced the commenceme
Endologix Completes Patient Enrollment in the ELEVATE IDE Clinical Study
News | Cardiovascular Clinical Studies | February 06, 2018
February 6, 2018 – Endologix, a developer and marketer of treatments for aortic disorders, announced the completion o
12-Month Results from Veryan Medical's MIMICS-2 IDE Study Presented at LINC
News | Cardiovascular Clinical Studies | February 01, 2018
February 1, 2018 – Thomas Zeller (Bad Krozingen, Germany) presented the 12-month results from Veryan Medical’s MIMICS
LimFlow Completes U.S. Feasibility Study Enrollment, Receives FDA Device Status
News | Cardiovascular Clinical Studies | February 01, 2018
February 1, 2018 –  LimFlow SA, developer of minimally-inv
ESC 2017 late breaking trial hot line study presentations.
News | Cardiovascular Clinical Studies | September 12, 2017
September 12, 2017 – The European Society of Cardiology (ESC) Congress 2017 includes several Hot Line Late-breaking C
U.K., NHS studies, weekend effect, hospital admission, atrial fibrillation, heart failure
News | Cardiovascular Clinical Studies | June 28, 2016
New research shows patients admitted to National Health Service (NHS) hospitals in the United Kingdom for atrial...
Overlay Init