News | Magnetic Resonance Imaging (MRI) | September 25, 2019

Machine Learning Could Offer Faster, More Precise Cardiac MRI Scan Results

U.K. study finds cardiac MRI scans can be read by artificial intelligence 186 times faster than humans, with comparable precision to experts

Machine Learning Could Offer Faster, More Precise Cardiac MRI Scan Results

September 25, 2019 – Cardiac magnetic resonance imaging (MRI) analysis can be performed significantly faster with similar precision to experts when using automated machine learning, according to new research. The study was published in Circulation: Cardiovascular Imaging, an American Heart Association journal.[1]

Currently, analyzing heart function on cardiac MRI scans takes approximately 13 minutes for humans. Utilizing artificial intelligence (AI) in the form of machine learning, a scan can be analyzed with comparable precision in approximately four seconds.

Healthcare professionals regularly use cardiac MRI scans to make measurements of heart structure and function that guide patient care and treatment recommendations. Many important clinical decisions including timing of cardiac surgery, implantation of defibrillators, and continuing or stopping cardiotoxic chemotherapy, rely on accurate and precise measurements. Improving the performance of these measures could potentially improve patient management and outcomes.

In the U.K., where the study was conducted, it is estimated that more than 150,000 cardiac MRI scans are performed each year. Based on the number of scans per year, researchers believe that utilizing AI to read scans could potentially lead to saving 54 clinician-days per year at each U.K. health center.

Researchers trained a neural network to read the cardiac MRI scans and the results of almost 600 patients. When the AI was tested for precision compared to an expert and trainee on 110 separate patients from multiple centers, researchers found that there was no significant difference in accuracy.

“Cardiovascular MRI offers unparalleled image quality for assessing heart structure and function; however, current manual analysis remains basic and outdated. Automated machine learning techniques offer the potential to change this and radically improve efficiency, and we look forward to further research that could validate its superiority to human analysis,” said study author Charlotte Manisty, M.D. Ph.D. “Our dataset of patients with a range of heart diseases who received scans enabled us to demonstrate that the greatest sources of measurement error arise from human factors. This indicates that automated techniques are at least as good as humans, with the potential soon to be ‘super-human’ — transforming clinical and research measurement precision.”

Although the study did not demonstrate superiority of AI over human experts and was not used prospectively for clinical assessment of patient outcomes, this study highlights the potential that such techniques could have in the future to improve analysis and influence clinical decision making for patients with heart disease.

For more information: www.ahajournals.org/journal/circimaging

 

Reference

1. Bhuva A.N., Bai W., Lau C., et al. A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis. Circulation: Cardiovascular Imaging, published online Sept. 24, 2019. https://doi.org/10.1161/CIRCIMAGING.119.009214

Related Content

TeraRecon will accelerate innovation in its advanced visualization and AI platforms for image-related decision support to clinical specialists

TeraRecon's End-to-End AI Ecosystem

News | Artificial Intelligence | March 04, 2020
March 4, 2020 — SymphonyAI Group, an operating group of lea
The FDA granted marketing authorization of the Caption Guidance software to Caption Health Inc. in February 2020. It uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

The Caption Guidance software uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

News | Artificial Intelligence | February 13, 2020
February 13, 2020 — The U.S.

GE Healthcare partnered with the AI developer Dia to provide an artificial intelligence algorithm to auto contour and calculate cardiac ejection fraction (EF). The app is now available on the GE Vscan pocket, point-of-care ultrasound (POCUS) system, as seen here displayed at RSNA 2019. Watch a VIDEO demo from RSNA.

Feature | Artificial Intelligence | February 11, 2020 | Sanjay Parekh, Ph.D. 
February 7, 2020 – At the 2019 Radiological Society...
A new technology for detecting low glucose levels via electrocardiogram (ECG) using a non-invasive wearable sensor, which with the latest artificial intelligence (AI) can detect hypoglycemic events from raw ECG signals has been made by researchers from the University of Warwick.

A new technology for detecting low glucose levels via electrocardiogram (ECG) using a non-invasive wearable sensor, which with the latest artificial intelligence (AI) can detect hypoglycemic events from raw ECG signals has been made by researchers from the University of Warwick.

 

News | Artificial Intelligence | January 13, 2020
A new technology for detecting low glucose levels via electrocardiogram (ECG) using a non-invasive wearable sensor,...
Videos | Artificial Intelligence | November 07, 2019
Piotr Slomka explains how his team at Cedars-Sinai is working on intelligent patient risk prediction algorithms...
AI Could Use EKG Data to Measure Patient's Overall Health Status

Image courtesy of iStock

News | Artificial Intelligence | August 29, 2019
In the near future, doctors may be able to apply artificial intelligence (AI) to electrocardiogram data in order to...
Half of Hospital Decision Makers Plan to Invest in AI by 2021
News | Artificial Intelligence | August 08, 2019
A recent study conducted by Olive AI explores how hospital leaders are responding to the imperative to drive efficiency...
Artificial Intelligence Solution Improves Clinical Trial Recruitment

A nurse examines a patient in the Emergency Department of Cincinnati Children’s, where researchers successfully tested artificial intelligence-based technology to improve patient recruitment for clinical trials. Researchers report test results in the journal JMIR Medical Informatics. Image courtesy of Cincinnati Children’s.

News | Artificial Intelligence | July 31, 2019
Clinical trials are a critical tool for getting new treatments to people who need them, but research shows that...

An example of AI-assisted automation developed by TomTec, where a deep learning algorithm automatically marks the myocardial borders and performs auto quantification This removes time consuming tasks to free up the operator to spend more time with patients and helps make exams more reproducible.

Feature | Artificial Intelligence | July 26, 2019
Intelligent software solutions (aka...
Overlay Init