News | Cath Lab | January 03, 2019

National Academy of Engineering, Ohio University Award 2019 Russ Prize

Five interventional cardiologists awarded biennial $500,000 prize for innovations leading to the widespread adoption of PCI

National Academy of Engineering, Ohio University Award 2019 Russ Prize

January 3, 2019 — Ohio University and the National Academy of Engineering announced the 2019 Fritz J. and Dolores H. Russ Prize will be given to Julio Palmaz, Leonard Pinchuk, John Simpson, Richard Schatz and Paul Yock for innovations leading to the widespread adoption of percutaneous coronary intervention (PCI), also known as angioplasty with stent or coronary angioplasty. The $500,000 biennial prize, which recognizes a bioengineering achievement that significantly improves the human condition, cites PCI for “seminal contributions to coronary angioplasty, enabling minimally invasive treatment of advanced coronary artery disease.”

“The Russ Prize recipients personify engineering creations that advance health and healthcare every day,” said NAE President C. D. Mote, Jr.  “The PCI makes a remarkable contribution to patient well-being, helping millions afflicted with advanced coronary artery disease and significant angina. “

Ohio University alumnus and esteemed engineer Fritz Russ, BSEE ’42, HON ‘75, and his wife, Dolores Russ, established the biennial prize in 1999 with a multimillion dollar gift to Ohio University. They modeled it after the Nobel Prize, with the goal of recognizing bioengineering achievements worldwide that are in widespread use.

“This innovation — truly, sets of innovations — enables the treatment of coronary artery disease without the complexities, cost and risk of open heart surgery. Most of us have a friend or relative who has benefited greatly from angioplasty treatment,” said Russ College Dean Dennis Irwin. “These contributions have truly improved the human condition. Rewarding such innovations was the Russes’ intent.”

Percutaneous coronary intervention, also referred to as percutaneous transluminal coronary angioplasty (PTCA), is a minimally invasive procedure that uses a catheter to place a small structure called a stent to open up blood vessels in the heart that have been narrowed by plaque buildup. PCI improves blood flow, thus decreasing heart-related chest pain, making patients feel better and increasing their ability to be active. Ten of millions of patients have benefited from PCI worldwide, and this procedure has replaced or significantly delayed the need for open heart coronary bypass surgery.

Julio C. Palmaz, inventor of the first U.S. Food and Drug Administration (FDA)-approved balloon-expandable vascular stent (1990), is Ashbel Smith Professor at the University of Texas Health Science Center in San Antonio and scientific adviser of Vactronix Scientific. The Palmaz stent is on display at the Smithsonian’s National Museum of American History in Washington, D.C. In 1994 he and Richard Schatz created a modified coronary stent — two Palmaz stents joined by a single connector — approved by the FDA as the first stent indicated for the treatment of failure of coronary balloon angioplasty. The Palmaz-Schatz stent became the gold standard for every subsequent stent submitted for FDA approval.

Leonard Pinchuk is an inventor and entrepreneur in biomedical engineering, with 128 U.S. patents and 90 publications. He has co-founded 10 companies where his major accomplishments include invention of the Nylon 12 angioplasty balloon, helical wire stent, modular stent-graft, a drug-eluting stent (Taxus), several biomaterials (Bionate and polystyrene-block-isobutylene-block-styrene [SIBS]), a novel glaucoma tube (InnFocus MicroShunt), and the next-generation intraocular lens. He is a Distinguished Research Professor of Biomedical Engineering at the University of Miami.

John Simpson has helped revolutionize the field of cardiology through innovations that fundamentally altered how physicians treat cardiovascular disease. In 1981 he created a new catheter system for coronary angioplasty with an independently steerable guidewire in the central lumen of the balloon catheter, patented as the over-the-wire balloon angioplasty catheter. He now focuses his efforts on the treatment of vascular disease through the development of new technologies combined with a new approach to optical imaging.

Read the related article “Requirements for Interventional Echocardiographers”

Richard Schatz is research director of cardiovascular interventions at the Scripps Heart, Lung and Vascular Center, and director of gene and stem cell therapy. He is a recognized international expert in interventional cardiology and has published and lectured extensively. His seminal work in coronary stents spurred a revolution in the treatment of coronary artery disease — over 2 million of them are placed annually worldwide, with an immeasurable impact on relieving mortality and morbidity, improving patients’ lives, and reducing healthcare costs.

Paul Yock is the Martha Meier Weiland Professor of Medicine and founding co-chair of Stanford’s Department of Bioengineering, with courtesy appointments in the Graduate School of Business and the Department of Mechanical Engineering. He is also founder and director of the Stanford Byers Center for Biodesign. He has authored over 300 peer-reviewed publications, chapters, and editorials and two textbooks, and holds over 50 U.S. patents. Yock is internationally known for his work in inventing, developing and testing new devices, including the Rapid Exchange stenting and balloon angioplasty system, which is now the primary system in use worldwide. He also invented the fundamental approach to intravascular ultrasound imaging and founded Cardiovascular Imaging Systems (CVIS), later acquired by Boston Scientific.

“Ohio University is honored to join the National Academy of Engineering in recognizing these accomplished individuals, who have contributed to a bioengineering advancement that has enabled better health for heart patients across the world,” said Ohio University President M. Duane Nellis. “Their multi-disciplinary collaboration that lead to the development of PCI, a technology that has revolutionized coronary health, truly embraces the vision that Fritz and Dolores Russ had when creating the Russ Prize.”

Palmaz, Pinchuk, Schatz, Simpson and Yock are the 10th recipients of the Russ Prize. They will receive the award at a National Academy of Engineering gala ceremony in Washington, D.C., on Feb. 20.

For more information: www.nae.edu

Related Content

New Alliance Announced Between Transcatheter Cardiovascular Therapeutics and VEITHsymposium
News | Cath Lab | June 20, 2019
VEITHsymposium and the Cardiovascular Research Foundation (CRF) announced an alliance between Transcatheter...
Novel Index Accurately Predicts PCI Success Post-Procedure Compared to Established Measurement Metrics
News | Cath Lab | June 19, 2019
Results from a comprehensive analysis demonstrate the effectiveness of measuring a non-hyperemic pressure ratio (NHPR...
Philips Healthcare, Volcano IVUS showing an implanted stent. IVUS might offer an alternative to contrast angiography in patients with acute kidney disease (AKD).
News | Cath Lab | June 14, 2019
June 14, 2019 – A late-breaking study examined the effects of intravascular ultrasound (IVUS) guided drug-eluting ste
Videos | Cath Lab | May 20, 2019
This is a walk through of the primary structural heart hybrid cath lab at...
Mobility May Predict Elderly Heart Attack Survivors' Repeat Hospital Stays
News | Cath Lab | April 23, 2019
Determining which elderly heart attack patients take longer to stand from a seated position and walk across a room may...
FDA Releases New Guidance on Medical Devices Containing Nitinol
News | Cath Lab | April 18, 2019
April 18, 2019 — The U.S.
Angiography shows a stenotic lesion in the mid right coronary artery, undilatable by standard high-pressure balloon angioplasty (inset, arrowheads). (B) Optical coherence tomography (OCT) cross-sectional (top) and longitudinal (bottom) images acquired before IVL and coregistered to the OCT lens (arrow in A) demonstrate severe near-circumferential calcification in the area of the stenosis. (C) Angiography demonstrates improvement in the area of stenosis after IVL lithoplasty.

Figure 2: Angiography demonstrates a stenotic lesion in the mid right coronary artery, undilatable by standard high-pressure balloon angioplasty (inset, arrowheads). (B) Optical coherence tomography (OCT) cross-sectional (top) and longitudinal (bottom) images acquired before IVL and coregistered to the OCT lens (arrow in A) demonstrate severe near-circumferential calcification (double-headed arrow) in the area of the stenosis. (C) Angiography demonstrates improvement in the area of stenosis after IVL (inset; note the cavitation bubbles generated by IVL [black arrows]). (D) OCT cross-sectional (top) and longitudinal (bottom) images acquired post-IVL and coregistered to the OCT lens (white arrow in C) demonstrate multiple calcium fractures and large acute luminal gain. (E) Angiography demonstrates complete stent expansion with the semicompliant stent balloon (inset) without the need for high-pressure noncompliant balloon inflation. (F) OCT cross-sectional (top) and longitudinal (bottom) images acquired post-stenting and coregistered to the OCT lens (arrow in E) demonstrate further fracture displacement (arrow), with additional increase in the acute area gain (5.17 mm2), resulting in full stent expansion and minimal malapposition.

Feature | Cath Lab | April 15, 2019 | Dean Kereiakes, M.D., FACC, FSCAI, and Jonathan Hill, M.D., DISRUPT CAD III Co-Principal Investigators
Over the last 40 years, despite multiple advancements in percutaneous coronary interventions, calcified lesions remai
BIOTRONIK’s PK Papyrus covered coronary stent. The stent ius used in emergency coronary artery dissections to repair the vessel wall.
Technology | Cath Lab | April 15, 2019
April 15, 2019 — Biotronik began its U.S.
Overlay Init