News | Congenital Heart | June 18, 2018

New Research Explores Role of Gene Mutation in Congenital Heart Defects

UNC researchers shed light on how CHD4 gene defects lead to congenital heart malformations

New Research Explores Role of Gene Mutation in Congenital Heart Defects

June 18, 2018 — Heart defects are the most common type of birth defect, and can be caused by mutations in the gene CHD4. Researchers at the University of North Carolina (UNC) School of Medicine have now revealed key molecular details of how CHD4 mutations lead to congenital heart defects.

The team, in their study published in Proceedings of the National Academy of Sciences, found that the CHD4 protein normally works in developing heart muscle cells to repress the production of muscle-filament proteins that are meant to operate in non-heart types of muscle cell. The failure of this repression leads to the development of abnormal, “hybrid” muscle cells that can’t pump blood as efficiently as normal heart cells.

“For patients with congenital heart defects linked to CHD4 mutations, this research helps explain why their hearts don’t work as well as normal, and suggests strategies for therapeutic intervention,” said study senior author Frank Conlon, Ph.D., a professor in the departments of biology and genetics at UNC and a member of the UNC McAllister Heart Institute.

The research was a collaborative effort involving the Conlon Laboratory, the laboratory of Ian Davis, M.D., Ph.D., associate professor in UNC’s division of pediatric hematology-oncology, and the laboratory of Paul Wade, Ph.D., at the National Institute of Environmental Health Sciences.

The team, including first author Caralynn M. Wilczewski, a graduate student in the Conlon Laboratory, began by engineering mice whose developing embryos lack CHD4 just in their heart cells. The embryonic mice developed severe cardiac defects midway through gestation and none was born alive. These results confirmed the necessity for CHD4 in heart development.

CHD4, the protein encoded by the CHD4 gene, normally works as part of a multi-protein “machine” that helps regulate gene activity within the nuclei of cells. The researchers therefore conducted a set of experiments to measure and analyze the changes in developing heart-muscle cell gene activity when CHD4 is absent. They found that the CHD4 protein normally binds directly to DNA in a way that represses the activity of genes that encode non-heart muscle proteins. These proteins help make up the springy fibers (myofibrils) that contract and relax when muscles work.

The team determined that when the CHD4 protein is absent, these other, non-cardiac muscle proteins are inappropriately produced in developing heart muscle cells. They become incorporated into the myofibrils in these cells, forming abnormal, hybrid myofibrils that lack the functional properties of the normal heart.

Wilczewski developed an advanced ultrasound technique and used it to record the activity of the tiny hearts developing in mice — organs that in mid-gestation are only about as large as the period at the end of a sentence.

“We observed that the hearts lacking CHD4 and having these abnormal cardiac myofibrils had severely reduced ventricular contractions, indicating a loss of the ability to pump blood normally,” Wilczewski said.

“These findings indicate that normal cardiac development in mice depends on the repression of non-cardiac myofiber proteins in heart muscle cells, to allow the formation of normal cardiac myofibers capable of sustaining normal heart contractions,” Conlon said.

The findings provide the first clear insight into the mechanism of CHD4-related cardiac defects. They also suggest the possibility that restoring the normal repression of non-cardiac myofiber proteins could prevent heart defects in cases where CHD4 is mutated.

The researchers now plan to investigate the ways in which specific human CHD4 mutations lead to cardiac defects.

In addition, they plan to use the new ultrasound technology developed by Wilczewski in further research. “This technology has broad applications for testing models of congenital heart disease,” Conlon said.

Funding for the study was provided by the National Institutes of Health (R01 HL112618, R01 HL127640, 5T32 HL069768, 1F31 HL136100, ES101965).

For more information: www.pnas.org

 

Reference

Wilczewski C.M., Hepperla A.J., Shimbo T., et al. “CHD4 and the NuRD complex directly control cardiac sarcomere formation.” Proceedings of the National Academy of Sciences, June 11, 2018. https://doi.org/10.1073/pnas.1722219115

 

Related Content

With the advent and optimization of nuclear scintigraphy protocols using bone-avid radiotracers, cardiac amyloidosis caused by transthyretin protein (ATTR) can now be diagnosed noninvasively without a costly tissue biopsy. The radiotracer 99mTc-pyrophosphate (99mTc-PYP) binds to deposited ATTR amyloid fibrils in the myocardium and can be visualized using planar and SPECT imaging. Amyloidosis Patient Registry  #Amyloidosis

With the advent and optimization of nuclear scintigraphy protocols using bone-avid radiotracers, cardiac amyloidosis caused by transthyretin protein (ATTR) can now be diagnosed noninvasively without a tissue biopsy. The radiotracer 99mTc-pyrophosphate (99mTc-PYP) binds to deposited ATTR amyloid fibrils in the myocardium and can be visualized using planar and SPECT imaging. This is Figure 2, showing how SPECT imaging allows the reader to distinguish between blood pool activity (ventricular cavity, etc) and myocardial activity and identify regional myocardial differences in radiotracer uptake.

News | Cardiac Diagnostics | March 05, 2020
March 5, 2020 — More than 300 patients have joined the Amyloidosis Patient Registry and it is now available to the en
heart disease image
News | Cardiac Diagnostics | December 18, 2019
December 18, 2019 — In their latest report, “...
FDA Warns Troponin Tests Impacted by Biotin Dietary Supplement
Feature | Cardiac Diagnostics | November 05, 2019 | Dave Fornell, Editor
November 5, 2019 — The U.S.
Videos | Cardiac Diagnostics | October 29, 2019
Doctor Clyde Yancy was a keynote speaker and said doctors need to check their assumptions about patients at the door...
79-year-old Tony Marovic had a right carotid endarterectomy shortly after discovering a 95 percent blockage of his carotid artery at a health and wellness screening event

79-year-old Tony Marovic had a right carotid endarterectomy shortly after discovering a 95 percent blockage of his carotid artery at a health and wellness screening event. Image courtesy of University Hospitals.

News | Cardiac Diagnostics | October 16, 2019
Health and wellness screenings are more than just nice events for the community – they can save lives. A Mentor, Ohio,...
Pesticide Exposure May Increase Heart Disease and Stroke Risk

Image courtesy of zefe wu from Pixabay

News | Cardiac Diagnostics | October 15, 2019
On-the-job exposure to high levels of pesticides raised the risk of heart disease and stroke in a generally healthy...
World Heart Federation Launches Global Roadmap on Cardiovascular Disease Prevention Among Diabetics
News | Cardiac Diagnostics | September 04, 2019
At the European Society of Cardiology (ESC) Congress 2019 together with the World Congress of Cardiology, the World...
Insomnia Tied to Higher Risk of Heart Disease and Stroke

Image courtesy of the American Heart Association

News | Cardiac Diagnostics | August 19, 2019
People suffering from insomnia may have an increased risk of coronary artery disease, heart failure and stroke,...