News | Stem Cell Therapies | September 04, 2015

No Benefit to Gene Transfer Therapy for Heart Failure Patients

Patients saw no reduction in recurrent events in largest gene therapy study to date for the population

CUPID 2, gene transfer therapy, heart failure patients, no benefit, ESC 2015, SERCA2a

September 4, 2015 — Gene transfer therapy to correct an enzyme abnormality involved in myocardial contraction and relaxation did not improve outcomes in heart failure patients with reduced ejection fraction, results of the CUPID 2 study show.

The findings, presented at the European Society of Cardiology (ESC) Congress 2015, represent the largest gene transfer study to date in this population.

“Despite promising results from earlier studies, the therapy did not reduce either recurrent heart failure events or terminal events in the overall study population or in pre-specified subgroups,” said principal investigator Barry Greenberg, M.D., from the University of California San Diego (UCSD) Sulpizio Cardiovascular Center.

But the results provide some important information for future research in this area, he said.

“They demonstrate that clinical trials testing gene transfer can be carried out effectively in heart failure patients, and that using intracoronary delivery of an adeno-associated virus (AAV) vector at this dose is safe,” he said.

CUPID 2 was based on the observation that deficiency of the enzyme sarcoplasmic reticulum CA2+ ATPase (SERCA2a), is linked to progression of heart failure and correction of this abnormality by gene transfer may improve cardiac function.

A pilot study by the same group showed that a single intracoronary infusion of the SERCA2a gene using an AAV vector had favorable effects in patients with advanced heart failure (Circulation 2011;124:304–13).

CUPID 2 (Calcium Up-Regulation by Percutaneous Administration of Gene Therapy in Cardiac Disease Phase 2b) investigated this finding further, enrolling 250 heart failure patients with reduced ejection fraction from 67 centers in the United States, Europe and Israel. 

Patients were randomized to receive one dose of either gene therapy (n=121) or placebo (n=122) and then followed for at least one year.

The primary efficacy endpoint was time to recurrent events, defined as hospitalizations or ambulatory treatment for worsening heart failure. The secondary efficacy endpoint was time to first terminal event, defined as all-cause death, heart transplant or implantation of a mechanical circulatory support device (MCSD). 

After a median follow-up period of 17.5 months, patients in the gene therapy group did not show improvements in either the primary or secondary endpoints compared to the placebo group.

Specifically, there were 104 recurrent events and 36 terminal events in the gene therapy arm compared to 128 and 29, respectively, in the placebo arm (hazard ratio [HR] 0•93, P=0•81 and HR 1•27, p=0•40 respectively). No safety issues were noted.

“Why infusion of SERCA2a did not improve outcomes in CUPID 2 is not certain and review of the data is underway to try to understand this,” said Greenberg.

“Although preliminary results in experimental models and in pilot studies of heart failure patients showed favorable results, it is possible that SERCA2a may not be an appropriate target for treating heart failure in human patients, and that the positive pilot study results could just be a chance finding.”

“Although deficiencies in SERCA2a activity and their correction by gene transfer have been demonstrated in animals, it is possible that these findings are not applicable in human heart failure and that raising the level of SERCA2a activity cannot alter the trajectory of the disease,” he suggested.

“Although CUPID 2 did not meet its end-points, it was an important study and the results should help inform future efforts using gene therapy to treat heart failure.”

The study was funded by Celladon Corp. Greenberg has been a consultant for and received honoraria from Celladon.

For more information: www.escardio.org


Related Content

News | Stem Cell Therapies

November 19, 2021 — Stem cell therapy helped to reduce the number of heart attacks, strokes and death among people with ...

Home November 19, 2021
Home
News | Stem Cell Therapies

October 28, 2021 – The first patient has been treated in a new trial using stem cell therapy to treat chronic myocardial ...

Home October 28, 2021
Home
Videos | Stem Cell Therapies

Mechanical engineering Professor Nathan Sniadecki, associate chair for research and infrastructure, mechanical ...

Home October 04, 2021
Home
Feature | Stem Cell Therapies | By Simon H. Stertzer, M.D.

Heart failure remains an unheralded global pandemic, costing society billions of dollars each year.[1,2] Projections ...

Home May 11, 2021
Home
Feature | Stem Cell Therapies | By Andy Freeberg

The University of Washington (UW) in Seattle has developed engineered heart tissue that beats. Though minuscule, the ...

Home February 25, 2021
Home
News | Stem Cell Therapies

August 22, 2019 — Renovacor Inc, a preclinical-stage biopharmaceutical company, announced the successful completion of ...

Home August 22, 2019
Home
News | Stem Cell Therapies

May 20, 2019 – Researchers at the Icahn School of Medicine at Mount Sinai have demonstrated that stem cells derived from ...

Home May 20, 2019
Home
News | Stem Cell Therapies

April 19, 2019 — Aziyo Biologics Inc. announced the publication of results from its landmark RECON study in the Journal ...

Home April 19, 2019
Home
News | Stem Cell Therapies

March 4, 2019 — The U.S. Food and Drug Administration (FDA) recently finalized two guidance documents regarding ...

Home March 04, 2019
Home
News | Stem Cell Therapies

February 1, 2019 — A team of Rutgers scientists have taken an important step toward the goal of making diseased hearts ...

Home February 01, 2019
Home
Subscribe Now