News | Artificial Intelligence | May 17, 2017

Partners HealthCare and GE Healthcare Launch 10-year Collaboration on Artificial Intelligence

Project vision includes co-development of open platform on which deep learning applications can be created, validated and seamlessly integrated into clinical workflows

Partners HealthCare and GE Healthcare Launch 10-year Collaboration on Artificial Intelligence

May 17, 2017 — Partners HealthCare and GE Healthcare announced a 10-year collaboration to rapidly develop, validate and strategically integrate deep learning technology across the entire continuum of care. The collaboration will be executed through the newly formed Massachusetts General Hospital and Brigham and Women’s Hospital Center for Clinical Data Science and will feature co-located, multidisciplinary teams with broad access to data, computational infrastructure and clinical expertise.

The initial focus of the relationship will be on the development of applications aimed to improve clinician productivity and patient outcomes in diagnostic imaging. Over time, the groups will create new business models for applying artificial intelligence (AI) to healthcare and develop products for additional medical specialties like molecular pathology, genomics and population health.

“This is an important moment for medicine,” said David Torchiana, M.D., CEO of Partners HealthCare. “Clinicians are inundated with data, and the patient experience suffers from inefficiencies in the healthcare industry. This partnership has the resources and vision to accelerate the development and adoption of deep learning technology and empower clinicians with the tools needed to store, analyze and leverage the flood of information to more rapidly and effectively deliver care.”

The vision for the collaboration is to implement AI into every aspect of a patient journey – from admittance through discharge. Once the deep learning applications are developed and deployed, clinicians and patients will benefit from a variety of tools that span disease areas, diagnostic modalities and treatment strategies and have the potential to do everything from decrease unnecessary biopsies to streamline clinical workflows to increase the amount of time clinicians spend with patients versus performing administrative tasks. Additionally, the teams will co-develop an open platform on which Partners HealthCare, GE Healthcare and third-party developers can rapidly prototype, validate and share the applications with hospitals and clinics around the world.

With the initial diagnostic imaging focus, early applications will address cases like:

  • Determining the prognostic impact of stroke,
  • Identifying fractures in the emergency room;
  • Tracking how tumors grow or shrink after the administration of novel therapies; and
  • Indicating the likelihood of cancer on ultrasound.

The applications are being developed based on three criteria:

  1. Patient impact;
  2. Technical capability; and
  3. Market appetite.

This is to ensure that the solutions being developed are not solely dependent on the data that’s available but specifically target the top clinician pain points and the most critically ill patients. The goal is to bring the most promising solutions to market faster, so they can start making an impact for hospitals, health systems and patients globally sooner.

Spinal injury patients represent the types of cases where deep learning applications can help clinicians deliver faster, more efficient care, as the patients need to be treated immediately or run the risk of significant and permanent damage. For a single patient, a lumbar spine magnetic resonance imaging (MRI) exam may generate up to 300 images. In addition, a doctor may need to review prior scans and notes in a patient’s electronic medical record before making a diagnosis. A deep learning application could be leveraged to quickly analyze the data and determine the most critical images for the radiologist to read, shortening the time to treatment for trauma patients, and enabling the clinician to deliver more personalized and comprehensive care for all patients – critically injured or not.

“We’re evolving the healthcare system to be able to take advantage of the benefits of deep learning, bringing together hospitals, data sets and clinical and technical minds unlike ever before,” said Keith Dreyer, DO, Ph.D., chief data science officer, Departments of Radiology at MGH and BWH. “The scope reflects the reality that advancements in clinical data science require substantial commitments of capital, expertise, personnel and cooperation between the system and industry.”

Watch a VIDEO interview with MGH Center for Clinical Data Science director Mark Michalski on the development of artificial intelligence to aid radiology.

Read the article "How Artificial Intelligence Will Change Medical Imaging."

For more information: www.gehealthcare.com, www.partners.org

Related Content

FDA Clears Aidoc's AI Solution for Flagging Pulmonary Embolism
Technology | Artificial Intelligence | May 15, 2019
Artificial intelligence (AI) solutions provider Aidoc has been granted U.S. Food and Drug Administration (FDA)...
Basic artificial intelligence is already incorporated into several premium echocardiography systems. This example is from the Philips Epiq, which can take 3-D datasets and the AI automatically identifies and segments the cardiac anatomy. It then extracts the best images for each of the standard views for an echocardiogram to eliminate variation between operators. The next generation echo AI software will pull in data from the electronic medical records and imaging data to offer suggested diagnoses.

Basic artificial intelligence is already incorporated into several premium echocardiography systems. This example is from the Philips Epiq, where the AI takes 3-D datasets and automatically identifies and segments the cardiac anatomy. It then extracts the best images for each of the standard echocardiogram views to eliminate variation between operators. The next generation echo AI software will pull in data from the electronic medical records and imaging data to offer suggested diagnoses.

Feature | Artificial Intelligence | May 07, 2019 | Ross Upton
Artificial Intelligence has a multitude of impacts on our daily lives, from recommending movies based upon your Netfl
FDA Proposes New Review Framework for AI-based Medical Devices
News | Artificial Intelligence | April 02, 2019 | Jeff Zagoudis, Associate Editor
U.S. Food and Drug Administration (FDA) Commissioner Scott Gottlieb, M.D., announced Tuesday the agency is pursuing a...
New Consensus Document Explores Ethical Use of AI in Radiology
News | Artificial Intelligence | March 05, 2019 | Jeff Zagoudis, Associate Editor
The American College of Radiology (ACR) is one of seven professional societies behind a new consensus document on the...
RSNA Offers First U.S. Spotlight Course on Artificial Intelligence
News | Artificial Intelligence | March 05, 2019
The Radiological Society of North America (RSNA) announced an expansion of its artificial intelligence (AI) education...
ACC Future Hub

Presenter delivers pitch at last year’s ACC Future Hub. This year during ACC.19, entrepreneurs will pitch software and hardware specific to cardiology in two categories– artificial intelligence and digitally enabled medical devices. (Image courtesy of ACC)

Feature | Artificial Intelligence | March 01, 2019 | By Greg Freiherr
Entrepreneurs to pitch innovative ideas at ACC
Siemens Healthineers Demonstrates Artificial Intelligence, Healthcare Digitalization at HIMSS19
News | Artificial Intelligence | February 13, 2019
At the 2019 Healthcare Information and Management Systems Society (HIMSS) global conference and exhibition, Feb. 11-15...
Overlay Init