News | Cath Lab | January 30, 2019

Scientists Discover New Heart Attack Repair Pathway

Study provides insight on how dead heart cells are consumed and reprogrammed by macrophages

Scientists Discover New Heart Attack Repair Pathway

A macrophage immune cell, with a dead cell (pink) that has been eaten, and a mitochondrion (green) between the dead cell and the nucleus. The study’s findings indicate that what the macrophage eats is taken up by the mitochondrion, which in turn communicates with the nucleus to activate the macrophage to promote tissue repair. Image courtesy of Northwestern Medicine.

January 30, 2019 — Northwestern Medicine scientists have discovered a novel signaling pathway that promotes healing after a heart attack. The study, published in Cell Metabolism, demonstrates for the first time that the metabolism of dead heart cells by macrophages reprograms the immune cells to launch an anti-inflammatory response and stimulate tissue repair.

“Targeting this pathway may have therapeutic benefit for a broad range of acute and chronic disorders — not only heart attacks — by enhancing the active resolution of inflammation,” said principal investigator Edward Thorp, Ph.D., associate professor of pathology and a member of the Feinberg Cardiovascular and Renal Research Institute (FCVRI).

Shuang Zhang, Ph.D., who recently graduated from Feinberg’s Driskill Graduate Program in Life Sciences (DGP), was the first author.

The Thorp Laboratory studies how immune cells regulate wound healing, in particular after myocardial infarction, or heart attack. After a patient has experienced a heart attack, immune cells are essential for removing dead or dying heart cells. If the cells are not cleared efficiently, they can lead to prolonged inflammation and cause further damage to the heart.

There are currently few effective treatments to enhance the healing process after a heart attack, and many patients go on to develop heart failure as a result of the damage.

The Thorp Laboratory has published extensively on efferocytosis — the process by which immune cells called macrophages engulf and ingest dying cells — and its critical role in turning on inflammation resolution after heart attack. But the intracellular mechanisms of the process remained unclear.

In the new research, the scientists discovered that when macrophages swallow dead heart cells during efferocytosis, the macrophages fill with metabolites that reprogram the cell to initiate an anti-inflammatory response and promote repair of the heart.

“Our findings elucidate a novel process by which dead tissue metabolites are recycled to fuel wound healing,” Thorp explained. “It extends the meaning of ‘you are what you eat’ to the cellular level.”

In an experimental model, the scientists further demonstrated that when mitochondria — an organelle which regulates metabolism — are defective, healing after cardiac injury is impaired.

The findings suggest a novel role for immune cell metabolism beyond the production of energy.

“The idea that mitochondria, or overall metabolism, can act as a dictator of the cell and control macrophage function — that’s very novel,” Zhang said.

The Thorp Laboratory is continuing to investigate metabolic control of human immune cell function in further studies of cardiac injury and organ transplantation. Zhang is beginning a post-doctoral fellowship at Harvard Medical School, where she will continue her study of immune cells.

For more information: www.cell.com/cell-metabolism

Reference

1. Zhang S., Weinberg S., DeBerge M., et al. Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain to Polarize Macrophages for Tissue Repair. Cell Metabolism, Dec. 27, 2018. https://doi.org/10.1016/j.cmet.2018.12.004

Related Content

New FDA Proposed Rule Alters Informed Consent for Clinical Studies
News | Cardiovascular Clinical Studies | November 19, 2018
The U.S. Food and Drug Administration (FDA) is proposing to add an exception to informed consent requirements for...
A key slide from Elnabawi's presentation, showing cardiac CT plaque evaluations, showing the impact of psoriasis medication on coronary plaques at baseline and one year of treatment. It shows a reversal of vulnerable plaque development. #SCAI, #SCAI2018

A key slide from Elnabawi's presentation, showing cardiac CT plaque evaluations, showing the impact of psoriasis medication on coronary plaques at baseline and one year of treatment. It shows a reversal of vulnerable plaque development.  

Feature | Cardiovascular Clinical Studies | May 14, 2018
May 14, 2018 – New clinical evidance shows common therapy options for psoriasis (PSO), a chronic inflammatory skin di
Intravenous Drug Use is Causing Rise in Heart Valve Infections, Healthcare Costs. #SCAI, #SCAI2018
News | Cardiovascular Clinical Studies | May 14, 2018
May 14, 2018 — The opioid drug epidemic is impacting cardiology, with a new study finding the number of patients hosp
Patient Enrollment Completed in U.S. IDE Study of THERMOCOOL SMARTTOUCH SF Catheter
News | Cardiovascular Clinical Studies | March 15, 2018
March 15, 2018 –  Johnson & Johnson Medical Devices Companies announced today that Biosense Webster, Inc., who wo
Lexington Begins HeartSentry Clinical Trial
News | Cardiovascular Clinical Studies | February 20, 2018
February 20, 2018 – Lexington Biosciences, Inc., a development-stage medical device company, announced the commenceme
Endologix Completes Patient Enrollment in the ELEVATE IDE Clinical Study
News | Cardiovascular Clinical Studies | February 06, 2018
February 6, 2018 – Endologix, a developer and marketer of treatments for aortic disorders, announced the completion o
12-Month Results from Veryan Medical's MIMICS-2 IDE Study Presented at LINC
News | Cardiovascular Clinical Studies | February 01, 2018
February 1, 2018 – Thomas Zeller (Bad Krozingen, Germany) presented the 12-month results from Veryan Medical’s MIMICS
LimFlow Completes U.S. Feasibility Study Enrollment, Receives FDA Device Status
News | Cardiovascular Clinical Studies | February 01, 2018
February 1, 2018 –  LimFlow SA, developer of minimally-inv
ESC 2017 late breaking trial hot line study presentations.
News | Cardiovascular Clinical Studies | September 12, 2017
September 12, 2017 – The European Society of Cardiology (ESC) Congress 2017 includes several Hot Line Late-breaking C
U.K., NHS studies, weekend effect, hospital admission, atrial fibrillation, heart failure
News | Cardiovascular Clinical Studies | June 28, 2016
New research shows patients admitted to National Health Service (NHS) hospitals in the United Kingdom for atrial...
Overlay Init