News | March 12, 2015

Study Reveals How Dietary Phosphate Can Increase Heart Disease Risk

Findings are especially relevant for patients with kidney disease, who lose the ability to excrete phosphate

March 12, 2015 — A new study has found that high phosphate levels can cause a stress signal inside the cells that line blood vessels, leading to the release of microparticles that promote the formation of blood clots. The findings, which appear in an upcoming issue of the Journal of the American Society of Nephrology (JASN), provide new insights into how phosphate in the diet can impact heart health.

Inorganic phosphate is a nutrient in nearly all diets. Because patients with chronic kidney disease (CKD) lose the ability to excrete excess phosphate in their urine, the nutrient accumulates in their blood and cells. Such “hyperphosphatemia” is thought to be an important contributor to CKD patients’ increased risk of cardiovascular disease.

To investigate this link, a team led by Alan Bevington, BA, D.P.hil, and Ph.D. student Nima Abbasian, BSc, MSc, University of Leicester, UK, examined the effects of hyperphosphatemia on the cells that form the lining of blood vessels. The researchers’ experiments revealed a mechanism by which an excess of inorganic phosphate—similar to levels found in the blood of CKD patients—causes a stress signal inside these cells. In cells that are stressed in this way, fragments known as microparticles break off from the cells and can promote the formation of blood clots. “This is important because blocking of blood vessels by blood clots—a process known as thrombosis—is a common cause of injury and death, occurring in a wide range of human illnesses including CKD,” said Bevington.

While the effects described in this study are especially relevant to patients with kidney dysfunction who lose the ability to excrete excess phosphate in their urine, nearly all modern Western diets are rich in phosphate, so even healthy individuals with normally functioning kidneys may experience some elevation of blood phosphate levels. In addition, there are a number of metabolic disturbances that can raise phosphate levels inside cells. “It’s possible therefore that the results of this study will also be relevant in other situations in addition to CKD,” said Abbasian.

For more information: www.asn-online.org

Related Content

The first 3-D images have been created of an RNA molecule known as "Braveheart" for its role in transforming stem cells into heart cells. Credit: Image courtesy Los Alamos National Laboratory

The first 3-D images have been created of an RNA molecule known as "Braveheart" for its role in transforming stem cells into heart cells. Credit: Image courtesy Los Alamos National Laboratory

News | Cardiovascular Clinical Studies | January 20, 2020
January 20, 2020 — Scientists at Los Alamos and international partners have created the first 3-D images of a special
Top Cardiology New in 2019 From the European Society of Cardioloigy (ESC)
News | Cardiovascular Clinical Studies | December 23, 2019
Environmental and lifestyle issues were popular this year, with pick up from both...
News | Cardiovascular Clinical Studies | November 26, 2019
November 26, 2019 — The University of Connecticut (UConn) Department of Kinesiology and Hartford Healthcare have sele
FDA Issues Final Guidance on Live Case Presentations During IDE Clinical Trials
News | Cardiovascular Clinical Studies | July 10, 2019
The U.S. Food and Drug Administration (FDA) issued the final guidance “Live Case Presentations During Investigational...
Veradigm Partners With American College of Cardiology on Next-generation Research Registries
News | Cardiovascular Clinical Studies | July 03, 2019
The American College of Cardiology (ACC) has partnered with Veradigm, an Allscripts business unit, to power the next...
New FDA Proposed Rule Alters Informed Consent for Clinical Studies
News | Cardiovascular Clinical Studies | November 19, 2018
The U.S. Food and Drug Administration (FDA) is proposing to add an exception to informed consent requirements for...
A key slide from Elnabawi's presentation, showing cardiac CT plaque evaluations, showing the impact of psoriasis medication on coronary plaques at baseline and one year of treatment. It shows a reversal of vulnerable plaque development. #SCAI, #SCAI2018

A key slide from Elnabawi's presentation, showing cardiac CT plaque evaluations, showing the impact of psoriasis medication on coronary plaques at baseline and one year of treatment. It shows a reversal of vulnerable plaque development.  

Feature | Cardiovascular Clinical Studies | May 14, 2018
May 14, 2018 – New clinical evidance shows common therapy options for psoriasis (PSO), a chronic inflammatory skin di
Intravenous Drug Use is Causing Rise in Heart Valve Infections, Healthcare Costs. #SCAI, #SCAI2018
News | Cardiovascular Clinical Studies | May 14, 2018
May 14, 2018 — The opioid drug epidemic is impacting cardiology, with a new study finding the number of patients hosp
Patient Enrollment Completed in U.S. IDE Study of THERMOCOOL SMARTTOUCH SF Catheter
News | Cardiovascular Clinical Studies | March 15, 2018
March 15, 2018 –  Johnson & Johnson Medical Devices Companies announced today that Biosense Webster, Inc., who wo