News | Cath Lab | January 25, 2017

Study Suggests Route to Improve Artery Repair

Research may point towards more effective surgical stents for people with diabetes

January 25, 2017 — People with any form of diabetes are at greater risk of developing cardiovascular conditions than people without the disease. Moreover, if they undergo an operation to open up a clogged artery by inserting a stent, the artery is much more likely to clog up again. However, researchers at Joslin Diabetes Centers, Boston, now have uncovered an explanation for why these procedures often fail, which may lead toward better alternatives.

An enzyme known as SHP-1, which can suppress the growth of smooth muscle cells lining the inside of blood vessels, plays a crucial role in stent failure, said George King, M.D., Joslin’s Chief Scientific Officer and senior author on a paper in the journal Diabetologia describing the work.

Stents coated with a drug that activates SHP-1, and thus slows the accelerated growth of these vascular cells, might help in treating arterial disease in diabetes, said King, who is also professor of medicine at Harvard Medical School.

His team’s research began with experiments among mice fed a high-fat diet and rats that were genetically modified to display insulin resistance and related metabolic conditions related to diabetes. “We found that SHP-1 expression was decreased in the arteries from all of these animal models,” said Weier (Glorian) Qi, co-lead author on the paper. “We also found that SHP-1 expression dropped in the arteries of patients with type 2 diabetes.”

Next, the scientists created mice that were genetically engineered to over-express the protein in their vascular smooth muscle cells. When the scientists fed these mice a high-fat diet that clogged their arteries and performed a procedure similar to stent insertion, they found that the arteries in these animals were less clogged than in normal mice given the same procedure.

The researchers went on to demonstrate that SHP-1 is reduced in mouse vascular smooth muscle cells primarily by the high levels of lipids in the blood associated with diabetes and related conditions, rather than the high levels of glucose also present in those conditions.

Following up on these findings may help to address a major research puzzle in diabetic complications, said King: Each type of tissue seems to react differently to the disease.

For example, he explained, smooth muscle cells grow thicker in large blood vessels like arteries, but similar type of contractile cells begin to die off in tiny blood vessels in the eye.

“These opposite cell growth patterns are an enigma,” King commented. “They also make it difficult to develop therapeutics, because we would want to deactivate SHP-1 in the eye and activate it in large arteries.”

Surgical stents for artery repair are typically coated with slow-releasing drugs that aim to suppress excessive regrowth of the surrounding smooth muscle cells. This approach to release drugs locally might work for drugs that boost SHP-1 expression, King speculated.

“We hope our research encourages ideas about how to address this problem for people with diabetes,” he added. ““The more ideas that come up, the greater the chances that we can achieve such a needed treatment.”

Joslin’s Qian Li was the other co-lead author on the paper. Joslin contributors also included Christian Rask-Madsen, Samuel Lockhart, Yu Xia, Xuanchun Wang and Mogher Khamaisi. Chong Wee Liew of the University of Illinois at Chicago; Lars Melholt Rasmussen of Odense University Hospital in Odense, Denmark; and Kevin Croce of Brigham and Women’s Hospital also were co-authors. Lead research support came from the JDRF, the American Diabetes Association and the National Institute of Diabetes and Digestive and Kidney Diseases.

For more information: www.diabetologia-journal.org

Related Content

Novel Index Accurately Predicts PCI Success Post-Procedure Compared to Established Measurement Metrics
News | Cath Lab | June 19, 2019
Results from a comprehensive analysis demonstrate the effectiveness of measuring a non-hyperemic pressure ratio (NHPR...
Philips Healthcare, Volcano IVUS showing an implanted stent. IVUS might offer an alternative to contrast angiography in patients with acute kidney disease (AKD).
News | Cath Lab | June 14, 2019
June 14, 2019 – A late-breaking study examined the effects of intravascular ultrasound (IVUS) guided drug-eluting ste
Videos | Cath Lab | May 20, 2019
This is a walk through of the primary structural heart hybrid cath lab at...
Mobility May Predict Elderly Heart Attack Survivors' Repeat Hospital Stays
News | Cath Lab | April 23, 2019
Determining which elderly heart attack patients take longer to stand from a seated position and walk across a room may...
FDA Releases New Guidance on Medical Devices Containing Nitinol
News | Cath Lab | April 18, 2019
April 18, 2019 — The U.S.
Angiography shows a stenotic lesion in the mid right coronary artery, undilatable by standard high-pressure balloon angioplasty (inset, arrowheads). (B) Optical coherence tomography (OCT) cross-sectional (top) and longitudinal (bottom) images acquired before IVL and coregistered to the OCT lens (arrow in A) demonstrate severe near-circumferential calcification in the area of the stenosis. (C) Angiography demonstrates improvement in the area of stenosis after IVL lithoplasty.

Figure 2: Angiography demonstrates a stenotic lesion in the mid right coronary artery, undilatable by standard high-pressure balloon angioplasty (inset, arrowheads). (B) Optical coherence tomography (OCT) cross-sectional (top) and longitudinal (bottom) images acquired before IVL and coregistered to the OCT lens (arrow in A) demonstrate severe near-circumferential calcification (double-headed arrow) in the area of the stenosis. (C) Angiography demonstrates improvement in the area of stenosis after IVL (inset; note the cavitation bubbles generated by IVL [black arrows]). (D) OCT cross-sectional (top) and longitudinal (bottom) images acquired post-IVL and coregistered to the OCT lens (white arrow in C) demonstrate multiple calcium fractures and large acute luminal gain. (E) Angiography demonstrates complete stent expansion with the semicompliant stent balloon (inset) without the need for high-pressure noncompliant balloon inflation. (F) OCT cross-sectional (top) and longitudinal (bottom) images acquired post-stenting and coregistered to the OCT lens (arrow in E) demonstrate further fracture displacement (arrow), with additional increase in the acute area gain (5.17 mm2), resulting in full stent expansion and minimal malapposition.

Feature | Cath Lab | April 15, 2019 | Dean Kereiakes, M.D., FACC, FSCAI, and Jonathan Hill, M.D., DISRUPT CAD III Co-Principal Investigators
Over the last 40 years, despite multiple advancements in percutaneous coronary interventions, calcified lesions remai
BIOTRONIK’s PK Papyrus covered coronary stent. The stent ius used in emergency coronary artery dissections to repair the vessel wall.
Technology | Cath Lab | April 15, 2019
April 15, 2019 — Biotronik began its U.S.
Providing Follow-Up Care After Heart Attack Helps Reduce Readmissions, Deaths
News | Cath Lab | April 09, 2019
A program designed to help heart attack patients with the transition from hospital to outpatient care can reduce...
TherOx Receives FDA Approval for SuperSaturated Oxygen Therapy
Technology | Cath Lab | April 08, 2019
TherOx Inc. announced that the U.S. Food and Drug Administration (FDA) granted premarket approval for its...
Overlay Init