News | Cardiac Diagnostics | August 16, 2016

Studying Blood Flow Dynamics to Identify the Heart of Vessel Failure

Insights into blood flow may lead to improved cardiac healthcare

Blood flow fluid dynamics, impact of sheer stresses in blood vessels

An example of blood flow fluid dynamics showing sheer stresses on the vessel wall. Image courtesy of the British Heart Foundation. It is beleived sheer stress and fluid dynamics inside vessles play a role in vascular disease.

blood flow dynamics, Physics of Fluids study, heart vessel failure, Gerasimos A.T. Messaris

Circumferential wall stress vs. time, for Womersley number α = 20. The left figure (a) corresponds to the matched asymptotic expansions solution. The right figure (b) corresponds to the single solution and shows when during the cardiac cycle the stress becomes zero or changes direction at an angle θ = π/2 on the arterial wall. Image courtesy of Gerasimos A.T. Messaris, Maria Hadjinicolaou and George T. Karahalios

August 16, 2016 — New research from a fluid mechanics team in Greece reveals how blood flow dynamics within blood vessels may influence where plaques develop or rupture. The findings could one day help doctors identify weak spots on a vessel wall that are likeliest to fail, and lead to early interventions in treating heart disease. The study was published this week in Physics of Fluids.

When plaque (fatty deposits that build up on the inside of arteries) rupture and block blood flow, the results can be deadly. Such hardening of the arteries, also called atherosclerosis, typically leads to heart disease, the leading cause of death in the United States. Despite years of therapeutic advances, scientists are still figuring out how and why these deposits develop, searching for a way to reduce the number of heart attacks and strokes.

In the study, the scientists developed a computer-based analytical solution that helps predict sites of vessel failure based on computations of disease-causing flow. They represented the complex blood flow within the heart during a cardiac cycle — the complete sequence of events in the heart from the beginning of one beat to the next.

The research improves predictions of circumferential wall stress or the forces inside the blood vessel compared to other methods. "This is a factor that may contribute … to the faster aging of the arterial system and the possible malfunction of the aorta," said lead researcher Gerasimos A.T. Messaris, a medical physicist at the University Hospital of Patras in Greece.

The team includes investigators from the Medical Physics Department of the University Hospital of Patras, the School of Science and Technology of the Hellenic Open University, and the Division of Theoretical Physics of the Department of Physics of the University of Patras.

The researchers also focused on the role inflow played via a parameter called the Womersley number. In the analysis of a biological fluid such as blood, it pertains to the unsteady parts of flow or the way blood pulses through vessels.

"Our present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α …The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach … can provide physical insight to the flow mechanism," said Messaris.

Identifying likely rupture spots on vessels is crucial for improving heart care for atherosclerotic disease because the plaque-forming cycle of cardiac disease begins with a rupture, or tear, in the vessel walls. This opening allows disease-causing particles to enter the vessel wall layers and progressively grow into plaques that either block the vessel, or cause a catastrophic rupture.

For more information: www.scitation.aip.org

Related Content

Livongo Launches Applied Health Signals Product Category
News | Cardiac Diagnostics | November 30, 2018
Healthcare technology company Livongo recently announced the launch of its Applied Health Signals product category,...
HHS Releases Second Edition of Physical Activity Guidelines for Americans. #AHA2018 #AHA18
News | Cardiac Diagnostics | November 14, 2018
The U.S. Department of Health and Human Services (HHS) released the second edition of the Physical Activity Guidelines...
ACC and AHA Release Updated Cholesterol Guidelines for 2018. #AHA18 #AHA2018
Feature | Cardiac Diagnostics | November 13, 2018
November 13, 2018 — New cholesterol guidelines from the American Heart Association (AHA) and the American College of
AMI READMITS Score Predicts Heart Attack Patients at High Readmission Risk
News | Cardiac Diagnostics | October 09, 2018
Tracking just seven factors of heart attack patients when they are first admitted to the hospital can help flag those...
Siemens Healthineers Showcases New In Vivo and In Vitro Cardiovascular Solutions at TCT 2018
News | Cardiac Diagnostics | September 21, 2018
At the 2018 Transcatheter Cardiovascular Therapeutics (TCT) conference, Sept. 21-25 in San Diego, Siemens Healthineers...
Weight Loss Drug Does Not Increase Cardiovascular Events
News | Cardiac Diagnostics | August 31, 2018
A weight loss drug does not increase cardiovascular events, according to late breaking results from the CAMELLIA-TIMI...
Acarix Presents CADScor System at ESC 2018
News | Cardiac Diagnostics | August 27, 2018
Acarix AB’s ultra-sensitive acoustic CADScor System for coronary artery disease risk assessment will be on display at...
NIH Ending Funding for Moderate Alcohol and Cardiovascular Health Trial
News | Cardiac Diagnostics | August 24, 2018
The National Institutes of Health announced in June it plans to end funding to the Moderate Alcohol and Cardiovascular...
Study Shows Multiple Benefits of Patient-to-Patient Connectivity in Familial Chylomicronemia Syndrome
News | Cardiac Diagnostics | August 07, 2018
Akcea Therapeutics Inc., an affiliate of Ionis Pharmaceuticals Inc., announced the publication of results from the...
Being Overweight May Change Young Adults' Heart Structure, Function
News | Cardiac Diagnostics | August 03, 2018
Even as a young adult, being overweight may cause higher blood pressure and thicken heart muscle, setting the stage for...
Overlay Init