News | Cardiac Diagnostics | August 16, 2016

Studying Blood Flow Dynamics to Identify the Heart of Vessel Failure

Insights into blood flow may lead to improved cardiac healthcare

Blood flow fluid dynamics, impact of sheer stresses in blood vessels

An example of blood flow fluid dynamics showing sheer stresses on the vessel wall. Image courtesy of the British Heart Foundation. It is beleived sheer stress and fluid dynamics inside vessles play a role in vascular disease.


August 16, 2016 — New research from a fluid mechanics team in Greece reveals how blood flow dynamics within blood vessels may influence where plaques develop or rupture. The findings could one day help doctors identify weak spots on a vessel wall that are likeliest to fail, and lead to early interventions in treating heart disease. The study was published this week in Physics of Fluids.

When plaque (fatty deposits that build up on the inside of arteries) rupture and block blood flow, the results can be deadly. Such hardening of the arteries, also called atherosclerosis, typically leads to heart disease, the leading cause of death in the United States. Despite years of therapeutic advances, scientists are still figuring out how and why these deposits develop, searching for a way to reduce the number of heart attacks and strokes.

In the study, the scientists developed a computer-based analytical solution that helps predict sites of vessel failure based on computations of disease-causing flow. They represented the complex blood flow within the heart during a cardiac cycle — the complete sequence of events in the heart from the beginning of one beat to the next.

The research improves predictions of circumferential wall stress or the forces inside the blood vessel compared to other methods. "This is a factor that may contribute … to the faster aging of the arterial system and the possible malfunction of the aorta," said lead researcher Gerasimos A.T. Messaris, a medical physicist at the University Hospital of Patras in Greece.

The team includes investigators from the Medical Physics Department of the University Hospital of Patras, the School of Science and Technology of the Hellenic Open University, and the Division of Theoretical Physics of the Department of Physics of the University of Patras.

The researchers also focused on the role inflow played via a parameter called the Womersley number. In the analysis of a biological fluid such as blood, it pertains to the unsteady parts of flow or the way blood pulses through vessels.

"Our present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α …The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach … can provide physical insight to the flow mechanism," said Messaris.

Identifying likely rupture spots on vessels is crucial for improving heart care for atherosclerotic disease because the plaque-forming cycle of cardiac disease begins with a rupture, or tear, in the vessel walls. This opening allows disease-causing particles to enter the vessel wall layers and progressively grow into plaques that either block the vessel, or cause a catastrophic rupture.

For more information: www.scitation.aip.org


Related Content

Feature | Cardiac Diagnostics | By Robert L. Quigley, MD, DPhil

Atherosclerotic cardiovascular disease (ASCVD), caused by plaque buildup in arterial walls, is one of the leading causes ...

Home January 23, 2024
Home
News | Cardiac Diagnostics

September 5, 2023 — GE HealthCare announced the launch of a handheld, wireless ultrasound imaging system designed for ...

Home September 05, 2023
Home
Feature | Cardiac Diagnostics | By Kelly Patrick

The global ambulatory diagnostic cardiology market was valued at $2.6 billion in 2022 and is forecast to rise to $3.3 ...

Home May 15, 2023
Home
News | Cardiac Diagnostics

February 8, 2023 — Results of research that identified new causes of Atherosclerotic Coronary Artery Disease, or ASCAD ...

Home February 08, 2023
Home
News | Cardiac Diagnostics

September 15, 2022 - Happitech has announced the launch of its FastStart Research app. The Amsterdam-based digital ...

Home September 15, 2022
Home
Feature | Cardiac Diagnostics | by Kelly Patrick

Like most healthcare markets, the diagnostic cardiology market has had a bumpy ride in recent years. The COVID-19 ...

Home August 23, 2022
Home
Feature | Cardiac Diagnostics | By Adam Saltman, MD, PhD

Before opining on the future of cardiac health, I think it’s important to define what “cardiac health” actually is. If ...

Home May 04, 2022
Home
News | Cardiac Diagnostics

January 31, 2022 — Scientists have developed an artificial intelligence (AI) system that can analyze eye scans taken ...

Home January 31, 2022
Home
News | Cardiac Diagnostics

November 10, 2021 — Abbott released new global market research from its Beyond Intervention initiative, the company’s ...

Home November 10, 2021
Home
Feature | Cardiac Diagnostics | By Dave Fornell, DAIC Editor

October 29, 2021 — A new guideline for the evaluation and diagnosis of chest pain was released this week that provides ...

Home October 29, 2021
Home
Subscribe Now