News | Genetic Testing | November 09, 2016

Sudden Cardiac Death of Teen Illustrates Necessity of Proper Genetic Testing

Mayo Clinic research reveals that 20 relatives were incorrectly diagnosed with potentially lethal heart rhythm condition following 13-year-old’s death

genetic testing, sudden cardiac death of teen, Mayo Clinic Proceedings

November 9, 2016 — The recent, sudden death of a 13-year-old boy resulted in more than 20 relatives being incorrectly diagnosed as having a potentially lethal heart rhythm condition. This erroneous diagnosis occurred as a result of inappropriate use of genetic testing and incorrect interpretation of genetic test results, according to Mayo Clinic research published in Mayo Clinic Proceedings.

This case highlights the potential danger of genetic testing when it is used incorrectly, and the great need to not only use this powerful tool carefully and wisely but to scrutinize the results with great caution, said senior author Michael J. Ackerman, M.D., Ph.D., genetic cardiologist and director of Mayo Clinic’s Windland Smith Rice Sudden Death Genomics Laboratory.

“While the technological advances in genetic sequencing have been exponential, our ability to interpret the results has not kept pace,” he said.

Following the boy’s death, family members were diagnosed with long QT syndrome, an inherited heart rhythm condition that potentially can cause fast and chaotic heartbeats. In some cases, it can cause sudden cardiac death. People can be born with a genetic mutation that puts them at risk of long QT syndrome. As a result, the boy’s brother prophylactically received an implantable cardioverter defibrillator, which can stop a potentially fatal arrhythmia. Specific genetic testing was performed throughout the father’s side of the family, leading to the eventual, but incorrect, diagnosis of long QT syndrome in more than 20 family members, Ackerman said.

The family then traveled to Mayo Clinic for a second opinion. During the course of their initial clinical evaluations, Ackerman became skeptical quickly of their previous diagnosis. Over the years, 40 percent of the patients who came to Mayo Clinic with the diagnosis of long QT syndrome left without the diagnosis, with the vast majority reclassified as normal.

“This family’s case appeared to be another case of mistaken identity with wrong conclusions being rendered to the data ascertained, especially the genetic test results,” he said. “In fact, none of the relatives who sought a second opinion at Mayo Clinic had personal symptoms of long QT syndrome, and none exhibited any electrocardiographic evidence of long QT syndrome at rest or with treadmill stress testing.” Since receiving the implantable cardioverter-defibrillator, the boy’s brother has had two inappropriate shocks delivered.

Then, with this clinical doubt raised, Ackerman and co-investigators worked to discover the true reason behind the boy’s death. The research team used the molecular autopsy that was pioneered by Ackerman and his team. First performed in the late 1990s, the molecular autopsy has advanced to what Ackerman refers to as “the whole-exome molecular autopsy coupled with genomic triangulation.” This strategy “provided closure and clarity” for the family, he said. “We discovered that the boy died tragically from an abnormal heart muscle condition caused by an entirely different genetic defect — unrelated to long QT syndrome — that was confined to only the sudden death victim,” Ackerman said.

“This family study highlights just how important it is to get things right on the first attempt, as it takes a tremendous amount of time, energy and money to reverse course and do it over again. It also depicts exactly the wrong way of using genetic testing and also precisely the right way of using and interpreting genetic testing. Ultimately, the clinician’s long-standing role to meticulously phenotype (characterize) his or her patient and his or her family is what matters most. When the pursuit of the genotype gets in front of the establishment of the phenotype, bad things happen,” Ackerman said.

Co-authors are: Jaeger Ackerman, Jamie Kapplinger, David Tester, all of Mayo Clinic; Daniel Bartos, Ph.D., University of Kentucky and University of California, Davis; and Brian Delisle, Ph.D., University of Kentucky.

For more information: www.mayoclinicproceedings.org

Related Content

Feature | Cybersecurity| August 16, 2017 | Dave Fornell
There is growing concern among patients and regulators that medical devices, especially implantable electrophysiology
AUM Cardiovascular Receives FDA Approval for CADence ECG Device
Technology | ECG| August 08, 2017
AUM Cardiovascular announced it has received clearance from the U.S. Food and Drug Administration (FDA) for CADence, a...
Three New Atrial Fibrillation Studies to Feature HeartLight Endoscopic Ablation System
News | Ablation Systems| August 07, 2017
CardioFocus Inc. announced that its HeartLight Endoscopic Ablation System is being featured in three new major clinical...
New Jersey Researcher Exploring New Stem Cell Therapies for Heart Attacks
News | Stem Cell Therapies| August 04, 2017
In petri dishes in her campus laboratory at New Jersey Institute of Technology, Alice Lee is developing colonies of...
New Study Focuses on Protein Responsible For Increased Heart Disease Risk
News | Cardiac Diagnostics| August 03, 2017
August 3, 2017 — A study to reduce the strongest inherited...
Merge Hemo cath lab hemodynamics monitoring system.

Hemodynamic data shown on screens from the Merge Hemo recording system. It is among the newer generation hemodynamic systems for cath labs that are more user friendly and have technologies to speed workflow.

Feature | Hemodynamic Monitoring Systems| August 03, 2017 | Dave Fornell
The current generation of...
Left Atrial Pressure Monitor from Vectorious Medical Technologies Offers New Hope for Heart Failure Patients

On of the top stories in July was the introduction of a left atrial pressure monitor from Vectorious Medical Technologies to prevent heart failure patient hospitalizations or readmissions. Read the article"Left Atrial Pressure Monitor Offers New Hope for Heart Failure Patients."

Feature | August 01, 2017 | Dave Fornell
Aug.
Philips released a new version of its iFR system that displays FFR readings as an overlay on live angiographic, angiogram images.

Philips released a new version of its iFR system that displays hemodynamic pressure drop points in an overlay on live angiographic images, matching up the iFR readings with corresponding lesions. The system is supposed to speed diagnostic decision making and help guide percutaneous revascularization procedures. 

Feature | FFR Catheters| July 31, 2017 | Dave Fornell
The gold standard for assessing the hemodynamic significance or coronary lesions to determine if they should be revas
Overlay Init