News | Cardiovascular Ultrasound | August 10, 2015

U.K. Breakthrough in Elastography Imaging Gives Better Vision to Surgeons

New passive approach to strain imaging for soft tissue could improve treatment of cancer and atrial fibrillation

Passive Elastography, TTP, U.K., ablation, atrial fibrillation

August 10, 2015 — The Technology Partnership (TTP), a U.K.-based research and product development company, has made major advances in the use of elastography, a medical imaging technique that maps elastic properties of soft tissue to provide vital diagnostic information during surgery. The new breakthrough could be used for surgical processes such as treating abnormal heart rhythms caused by atrial fibrillation, killing or removing cancerous or damaged tissue, or simply navigating around the body during an operation.
 
Surgeons currently work with ‘blind’ instruments, so cannot see into lesions and have to rely on their skills to avoid damaging nearby organs when performing processes such as resection or ablation. Elastography is an imaging technology that determines the stiffness of tissue and can be adapted to measure the level of muscle contraction. For example, cancerous tumors will often be palpably stiffer than the surrounding tissue and diseased livers are stiffer than healthy ones.
 
Traditional elastography relies on creating displacement in the tissue by inducing a distortion by sending a shear wave through the tissue or by vibrating the surface of the tissue. However, TTP’s patent-pending approach uses a process of Passive Elastography, which relies on the body’s normal physiological distortions — created for example by the beating of the heart, the respiration of the lungs, or the expansion and contraction of the blood vessels. In fact, it doesn’t matter what generates the distortion, and TTP’s Passive Elastography technology is even sensitive enough to measure the small mechanical movement caused by natural hand tremor in the operator holding the probe.
 
Using ultrasound frequencies between 5 and 40 MHz, TTP captures sets of two or three ultrasound images at a time and measures the displacement caused by the body’s natural movement – typically around 10 microns amplitude within each set of images. TTP then looks at the structural changes visible from the data to map muscle stiffness or muscle contraction and displays this as a color-map over the top of the ultrasound image. The result looks similar to a heat map with a resolution of around 0.5mm and up to a depth of around 50mm.
 
The strain imaging technology is designed for integration with existing ablation instruments or probes, to give surgeons the ability to visualize work which would otherwise be blind.
 
“When we started looking at ultrasound imaging for these surgical applications, it became clear that there is a need for a new imaging solution, which has enough contrast, resolution and image depth,” says TTP’s Paul Galluzzo.  “For example, optical methods such as OCT [optical coherence tomography] and photo acoustics provide good contrast but inadequate imaging depth in this case, while electrical impedance spectroscopy does not produce an image and traditional ultrasound can’t always tell the difference between live and dead tissue during ablation.”

For more information: www.ttp.com

Related Content

The FDA is concerned about cybersecurity of ICDs and cyber security of other medical devices.
Feature | Cybersecurity| August 16, 2017 | Dave Fornell
There is growing concern among patients and regulators that medical devices, especially implantable electrophysiology
Three New Atrial Fibrillation Studies to Feature HeartLight Endoscopic Ablation System
News | Ablation Systems| August 07, 2017
CardioFocus Inc. announced that its HeartLight Endoscopic Ablation System is being featured in three new major clinical...
Oregon Tech Partners with Mindray for High-Tech Ultrasound Education
News | Ultrasound Imaging| August 04, 2017
To better prepare its ultrasound students to compete and thrive in the evolving healthcare environment, Oregon...
Carestream Shows Touch Prime Systems at Society for Vascular Ultrasound Conference
News | Cardiovascular Ultrasound| August 03, 2017
Carestream will showcase its Carestream Touch Prime and Touch Prime XE Ultrasound Systems at the Society for Vascular...
Merge Hemo cath lab hemodynamics monitoring system.

Hemodynamic data shown on screens from the Merge Hemo recording system. It is among the newer generation hemodynamic systems for cath labs that are more user friendly and have technologies to speed workflow.

Feature | Hemodynamic Monitoring Systems| August 03, 2017 | Dave Fornell
The current generation of...
Left Atrial Pressure Monitor from Vectorious Medical Technologies Offers New Hope for Heart Failure Patients

On of the top stories in July was the introduction of a left atrial pressure monitor from Vectorious Medical Technologies to prevent heart failure patient hospitalizations or readmissions. Read the article"Left Atrial Pressure Monitor Offers New Hope for Heart Failure Patients."

Feature | August 01, 2017 | Dave Fornell
Aug.
Ohio State Researchers Prove Human Heart's 'Battery' Has Multiple Backups
News | EP Lab| July 27, 2017
July 27, 2017 — There is good news when it comes to the heart’s sinoatrial node (SAN), the body’s natural...
Medtronic Announces First Enrollments in STOP AF First Clinical Trial
News | Ablation Systems| July 24, 2017
Medtronic plc recently announced first enrollments in the STOP AF First clinical trial. The trial will evaluate the...
Overlay Init