News | Cardiac Diagnostics | December 08, 2015

University of Toronto Scientists Redefine Arterial Wall Inflammation

Better understanding of tissue macrophages offers hope of improved treatment options for cardiovascular disease treatment

University of Toronto, arterial inflammation, tissue macrophage, Clinton Robbins

December 8, 2015 — Researchers from the University of Toronto have found that a specific cell type plays a key role in maintaining healthy arteries after inflammation. It’s a discovery that could provide treatment options for cardiovascular disease — one of the leading causes of death in Canada.

The researchers found that a specific type of tissue macrophage, a group of white blood cells that defend against infection, are created and operate separately from other macrophages that come from the bone marrow. Unlike bone marrow macrophages, these cells live in the outer layer of the arterial wall, can self-replicate and help to heal the vessel after inflammation.

“We’ve discovered that a group of macrophages are created when the embryo is developing, before the bone marrow is functioning,” said Clinton Robbins, a professor in the Faculty of Medicine’s Departments of Laboratory Medicine and Pathobiology and Immunology. “These macrophages can self-replicate and likely regulate the normal function of our arteries. This is a fundamental biological discovery that could play an important role in many cardiovascular diseases.”

The journal Nature Immunology published the results of the study.

Robbins and his team found that during infection these self-replicating macrophages leave the arterial wall, while macrophages from the bone marrow come in and engulf the bacteria. The team thinks that once inflammation resolves, the self-renewing macrophages return to heal the damaged tissue.

Using a special tagging system, they accurately traced where the macrophages were coming from.

“Previously, we couldn’t identify one macrophage from another because we were limited by technology,” said Robbins, who is also the Peter Munk Chair of Aortic Disease Research in the Toronto General Research Institute at University Health Network. “Now we can see exactly where they’re coming from and where they’re going. Our job now is to get a better understanding of what these different macrophage populations are doing.”

Next, the researchers will study how these resident macrophages interact with their tissue environment and exactly what role they might play in cardiovascular disease. By understanding the relationship between the different cell types, they hope to target inflammation caused by infection or atherosclerosis more effectively.

“We know that while bone marrow macrophages remove bacteria, they can also cause atherosclerosis by entering the arterial wall and multiplying,” said Rickvinder Besla, graduate student and co-lead author. “In the old model, you might try to shut the bone marrow response down, but this leaves the patient immunosuppressed. Our new model suggests we could possibly reduce inflammation by boosting the activity of these self-replicating macrophages.”

Robbins acknowledges that there’s still a lot to learn about the complexity of these macrophages and how they interact with their environment and other cells.

“Arteries are more than tubes that shuttle blood around. They create a complex and dynamic network that reacts to inflammation and disease in different ways. We’re excited to figure out another piece of this puzzle and how we might target cardiovascular disease in the future,” he said.

For more information:

Related Content

Male Triathletes May Be Putting Their Heart Health at Risk
News | Cardiac Diagnostics | January 09, 2018
Competitive male triathletes face a higher risk of a potentially harmful heart condition called myocardial fibrosis,...
ERT Acquires iCardiac Technologies
News | Cardiac Diagnostics | December 19, 2017
ERT recently announced it has acquired iCardiac Technologies, a provider of centralized cardiac safety and respiratory...
New Study Suggests Protein Could Protect Against Coronary Artery Disease

Patients with no obstructed blood flow in the coronary arteries had higher levels of CXCL5 (blue) compared to patients with moderate levels (green) or lower levels (yellow) of CXCL5, who had increased severity of coronary obstructions (indicated by the arrows). Credit: Schisler lab

News | Cardiac Diagnostics | December 07, 2017
December 7, 2017 — The buildup of plaque in the heart’s arteries is an unfortunate part of aging.
E-cigarettes Most Likely to be Used by Alcohol Drinkers and Former Cigarette Smokers, at American Heart Association (AHA), #AHA2017.
News | Cardiac Diagnostics | December 06, 2017
December 6, 2017 — Electronic cigarettes are more frequently used by people who recently quit smoking and alcohol dri
Lack of sleep may cause heart disease in older women. American heart Association, #AHA2017
News | Cardiac Diagnostics | December 06, 2017
December 6, 2017 — Older women who do not get enough sleep were more likely to have poor cardiovascular health, accor
New Tool Predicts Risk of Heart Attack in Older Surgery Patients
News | Cardiac Diagnostics | December 05, 2017
A tool designed to more accurately predict the risk of heart attack in older patients undergoing non-cardiac surgery...
EPIC Norfolk prospective population study showed any physical activity is better than none in older adults in preventing cardiovascular disease.

The EPIC Norfolk prospective population study showed any physical activity is better than none in older adults in preventing cardiovascular disease.

News | Cardiac Diagnostics | November 24, 2017
November 24, 2017 — Any physical activity in the elderly is better than none at all for reducing cardiovascular risk,
Analytics 4 Life Presents Clinical Data on Machine-Learned Cardiac Imaging Technology at TCT 2017
News | Cardiac Diagnostics | November 01, 2017
Analytics 4 Life announced it will be presenting new clinical data on the company's ongoing Coronary Artery Disease...
American Heart Association, Verily and AstraZeneca Launch One Brave Idea Science Innovation Center
News | Cardiac Diagnostics | October 20, 2017
The American Heart Association, Verily and AstraZeneca announced the opening of the One Brave Idea Science Innovation...
Overlay Init