News | Cardiovascular Clinical Studies | September 14, 2023

Myocardial Infarction, the Number One Cause of Sudden Death, May be Treated by Modulating the Immune Response

Reduced inflammation at the site of myocardial infarction and improved heart function demonstrated. Novel therapy to modulate immune response with apoptotic cell-derived nanovesicles 

Reduced inflammation at the site of myocardial infarction and improved heart function demonstrated. Novel therapy to modulate immune response with apoptotic cell-derived nanovesicles

Schematic illustration of treatment of myocardial ischemia-reperfusion (IR) injury with the targeted delivery of ApoNV-DCs. Image courtesy of Korea Institute of Science and Technology 


September 14, 2023 — Myocardial infarction, the number one cause of sudden death in adults and the number two cause of death in Korea, is a deadly disease with an initial mortality rate of 30%, and about 5-10% of patients die even if they are transported to a medical center for treatment. The number of myocardial infarction patients in Korea has been increasing steeply, from 99,647 in 2017 to 126,342 in 2021, an increase of 26.8% in five years. Until now, drug administration, percutaneous angioplasty, and arterial bypass surgery have been known as treatments, but they are difficult to apply to severe cases that do not respond to them. 

Dr. Yoon Ki Joung and Dr. Juro Lee of the Biomaterials Research Center at the Korea Institute of Science and Technology (KIST), together with Prof. Hun-Jun Park and Dr. Bong-Woo Park of the Catholic University of Korea College of Medicine, have developed a new treatment for myocardial infarction that uses nanovesicles derived from fibroblasts with induced apoptosis to modulate the immune response. 

Myocardial infarction is an ischemic heart disease in which the coronary arteries, the blood vessels that supply blood to the heart, become narrowed or blocked, resulting in insufficient blood supply to the heart muscle, which causes nutrient and oxygen deficiency in the myocardium, leading to poor heart function. According to market research firm Technavio, the global myocardial infarction therapeutics market is expected to reach $2.02 billion by 2026, at a CAGR of 4.7%. In recent years, stem cell-derived nanovesicles, such as exosomes, have been used to treat myocardial infarction by modulating the inflammatory response, but stem cells are difficult to produce in large quantities, limiting their economic viability. 

The research team identified the possibility of treating severe myocardial infarction by reducing the inflammatory response in the heart muscle through a nanomedicine based on apoptotic cells, which are cells that commit suicide due to biochemical changes in their cells. This response was achieved by attaching peptides specific to the site of ischemic myocardial infarction and substances specific to macrophage phagocytosis to the surface of fibroblasts. To this end, the team developed anti-inflammatory nanovesicles that can be delivered specifically to macrophages at the site of myocardial infarction. 

In animal studies, we found that intravenously injected nanovesicles were effectively delivered to the myocardial infarction site in rats and were specifically recruited to macrophages. As a result, the left ventricular ejection fraction, an indicator of the contractile force of the left ventricle, increased by more than 1.5 times compared to the control group for 4 weeks. In addition, the effects of reducing inflammation and fibrosis, and increasing blood vessels preservation rate enhanced cardiomyocytes survival, which resulted in cardiac function improvement. 

"This is the first study to use nanovesicles produced from apoptosis-induced cells to treat myocardial infarction, and it has the advantage of being able to mass-produce them because it uses other cells rather than stem cells," said Dr. Yoon Ki Joung of KIST. "In the future, we plan to conduct a research to verify the effectiveness and safety of the treatment, including clinical trials, through a collaborative research with Catholic University of Korea Medical School and bio companies." 

For more information: https://eng.kist.re.kr/ 


Related Content

News | Cardiovascular Clinical Studies

May 2, 2024 — BioCardia, Inc., a developer of cellular and cell-derived therapeutics for the treatment of cardiovascular ...

Home May 02, 2024
Home
News | Cardiovascular Clinical Studies

May 1, 2024 — A study in more than 3,000 US counties, with 315 million residents, has suggested that air pollution is ...

Home May 01, 2024
Home
News | Cardiovascular Clinical Studies

April 30, 2024 — Regenerative heart therapies involve transplanting cardiac muscle cells into damaged areas of the heart ...

Home April 30, 2024
Home
News | Cardiovascular Clinical Studies

April 24, 2024 —Hello Heart, a digital leader in preventive heart health, today announced results from its latest study ...

Home April 24, 2024
Home
News | Cardiovascular Clinical Studies

April 22, 2024 — Corvia Medical, Inc, a company dedicated to transforming the treatment of heart failure, welcomes the ...

Home April 22, 2024
Home
News | Cardiovascular Clinical Studies

April 16, 2024 — CVRx, Inc., a commercial-stage medical device company, announced today the availability of additional ...

Home April 16, 2024
Home
News | Cardiovascular Clinical Studies

April 11, 2024 — Transcatheter aortic valve replacement (TAVR) was found to bring no increased risks and was associated ...

Home April 11, 2024
Home
News | Cardiovascular Clinical Studies

April 11, 2024 — People with a buildup of fatty atherosclerotic plaque in the heart’s arteries considered at risk of ...

Home April 11, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — Patients who took an angiotensin-converting enzyme (ACE) inhibitor while undergoing cancer treatment ...

Home April 09, 2024
Home
Subscribe Now