Feature | July 21, 2010| Avi Fischer, M.D., FACC, FHRS

Advances in Transvenous Lead Extraction

Longer patient life-spans will necessitate increasing number of lead extractions

The Spectranetics Laser Sheath comes in various sizes to accommodate different size leads.

The Spectranetics Laser Sheath uses an excimer laser sheath over the lead to ablate scar tissue and free the lead from the vessel wall.

Cardiac rhythm device reliability and the approach to managing complications associated with these devices have recently been the topic of numerous medical and nonmedical publications. As the number of implanted cardiac rhythm devices continues to grow and the devices are implanted in patients with longer life expectancies, the need for lead management and lead extraction is expected to grow as well. It is now recognized that transvenous lead extraction is a central treatment in patients with cardiac rhythm devices and pathologic lead conditions.

Proper lead management requires an understanding of lead design and the pathophysiology of mechanical and clinical issues associated with lead dysfunction. The safety and efficacy of transvenous lead extraction varies widely and the number of trained physicians lags behind the current demand for this procedure. In May 2009 the Heart Rhythm Society (HRS) updated its expert consensus recommendations for transvenous lead extraction.

Watch the 2017 VIDEO "EP Lead Extraction Strategies," an interview with Bruce Wilkoff, M.D., director of cardiac pacing and tachyarrhythmia devices at Cleveland Clinic.

 

Indications for Lead Extraction
The indications for lead extraction can be divided into several categories: infection, malfunction, upgrade (abandoned/ unused lead), venous occlusion/stenosis and safety alerts.

Infection
The rate of device infection is growing at a greater rate than device implantation. Data suggests that the rate of device infection at the time of replacement and/or upgrade approaches 5-7 percent. Medicare data from 1990-1999 identified a 124 percent increase in the rate of cardiac device infection. Other data from a national hospital discharge survey identified a 310 percent increase in hospitalizations for cardiac device infections with the most dramatic increase being for implantable cardioverter defibrillator (ICD) infections. This was associated with a greater than two-fold increase in the risk of in-hospital death.

It is no longer acceptable to treat device infections in a “conservative” manner with antibiotics alone. Curative therapy nearly always requires removal of the entire pacemaker or defibrillator system from the infected individual, with re-implantation of a new system at an alternate site. Even for an isolated infection of the device pocket, complete system removal is indicated. This has been addressed in the most recent consensus guidelines where isolated pocket infection is now designated as a class I indication for complete system removal.

Venous Occlusion
As patients are being implanted with cardiac rhythm devices at younger ages and life expectancies continue to increase, a greater number of patients are being seen requiring system revision and upgrade. Increasingly patients are being seen with abandoned or unused leads and venous occlusions are becoming more widely recognized. The presence of venous obstruction is likely to become a common issue challenging all device-implanting physicians. While the rate of symptomatic occlusion is low, estimated at 0.35-3.5 percent, the rate of asymptomatic occlusion may be a high as 50 percent.

There are a variety of methods and tools to deal with venous occlusion in the patient requiring system revision or upgrade. The existing system can be abandoned with a new system on the contralateral side. A contralateral lead can be placed and tunneled across the chest to the existing system; or an epicardial lead can be placed via thoracotomy and tunneled to the existing system. Each of these approaches has significant limitations and drawbacks. One of the most effective ways of obtaining venous access in the patient with a venous occlusion is lead extraction, even of functional leads. Through the use of the extraction sheath, a lead can be removed and venous access obtained. This is true not just for veins such as the subclavian and innominate, but also for more central structures such as occlusion in or near the superior vena cava. Numerous reports in the literature have demonstrated the utility of lead extraction to facilitate device upgrade in the patient with venous occlusion.

Abandoned, Unused and Nonfunctional
Management of patients with abandoned, unused, nonfunctional leads or leads with safety alerts has been a topic of increasing attention over the last several years. Proper management of patients with these leads is critical. The failure rate of pacemaker and defibrillator leads varies widely depending on the age and model of the lead. Historically, the perceived risk of extraction has limited the referral and performance of this procedure to patients with life-threatening situations, but experience and the development of newer tools have influenced the outcomes of transvenous lead extraction. Particular attention should be paid to the type of lead that is under advisory with assessment of the risks versus benefits of lead extraction in the individual patient.

The recent, four-year retrospective LExICon (Lead Extraction in Contemporary Settings) study of 1,449 consecutive patients undergoing excimer laser assisted lead extraction has shed light on the current safety and efficacy of laser-assisted lead extraction. In the study, 96.5 percent of the 2,405 leads attempted were completely extracted and clinical success was achieved in 97.7 percent of patients.

Importantly, major adverse events directly related to lead extraction occurred in 1.4 percent of patients.
Operator experience is important in determining clinical outcome. In the LExICon study, extraction at a less experienced center (less than or equal to 60 cases) was associated with procedural and clinical failure. These findings were in agreement with other published data demonstrating a significant learning curve for this procedure. Therefore, physicians should consider their extraction experience when deciding to perform this procedure and consider whether extractions should be referred to higher volume centers.

 

Read the article “ Study Shows Occlusion Balloon Saves Lives During Lead Extraction.”  

Watch a VIDEO demonstrating how to use the Bridge Occlusion Balloon.

Editor’s Note: Avi Fischer is the director of pacemaker and defibrillator therapy and cardiac arrhythmia service at Mount Sinai Medical Center in New York, N.Y.

References:
1. Wilkoff B., et al. “Transvenous Lead Extraction: Heart Rhythm Society Expert Consensus on Facilities, Training, Indications and Patient Management.” Heart Rhythm. 2009 July; 6 (7) pages 1085-1104.

2. Sohail, Muhammad R. “Management and Outcome of Permanent Pacemaker and Implantable Cardioverter-Defibrillator Infections.” Journal of the American College of Cardiology, Vol. 49, No. 18, 2007: pages 1851-1859.

3. Voight, Andrew, et al. “Rising Rates of Cardiac Rhythm Management Device Infections in the United States: 1996 Through 2003.” Journal of the American College of Cardiology. Vol. 48, No. 3, 2006: pages 590-591.

4. Gula L. J. et al. “Central Venous Occlusion is Not an Obstacle to Device Upgrade With the Assistance of Laser Extraction.” Pacing and Clinical Electrophysiology, 2005; 28: pages 661–666.
 

5. Neuzil P. et al. “Pacemaker and ICD Lead Extraction With Electrosurgical Dissection Sheaths and Standard Transvenous Extraction Systems: Results of a Randomized Trial.” Europace 2007;9: pages 98–104.

6. “Annual Rate of Transvenous Defibrillation Lead Defects in Implantable Cardioverter-Defibrillators Over a Period of >10 Years,” Thomas Kleemann, et al; Circulation, Vol. 115, Issue 19; May 15, 2007 

Related Content

Mexican Doctors Safely Reuse Donated Pacemakers After Sterilization
News | Pacemakers| November 10, 2017
Mexican doctors have safely reused donated pacemakers after sterilization, shows a study presented at the 30th Mexican...
Acutus dipole density EP mapping for ablation procedures.

The FDA recently cleared high-speed Acutus Medical's AcQMap High Resolution image and mapping system and the AcQMap 3-D Imaging and Mapping Catheter.  detects and displays both standard voltage-based and higher resolution dipole density (charge-source) maps. The system combines ultrasound anatomy construction with an ability to map the electrical-conduction of each heartbeat to identify complex arrhythmias across the entire atrial chamber. Following each ablation treatment, the heart can be re-mapped in seconds to continually visualize any changes from the prior mapping.

 

 

Feature | Atrial Fibrillation| November 07, 2017
November 7, 2017 — Here is an aggregated list of articles detailing the latest clinical data and new device technolog
The Abbott/St. Jude Confirm RX implantable cardiac monitor (ICM) is the first ICM that is compatible with patients' smartphones to eliminate the need for a bedside base unit monitor to transfer data to physicians. Its FDA clearance was in October 2017.

The Abbott/St. Jude Confirm RX implantable cardiac monitor (ICM) is the first ICM that is compatible with patients' smartphones to eliminate the need for a bedside base unit monitor to transfer data to physicians. Its FDA clearance was the No. 1 most popular article on DAIC in October.

Feature | November 03, 2017 | Dave Fornell
November 3, 2017 — Here is the list of the most popular articles and videos on the Diagnostic and Interventional Card
Societies Detail Treatment for Patients With Ventricular Arrhythmias
News | EP Lab| October 30, 2017
The American College of Cardiology, along with the American Heart Association and the Heart Rhythm Society, published...
Videos | EP Mapping and Imaging Systems| October 24, 2017
This video, provided by Acutus Medical, demonstrates a patient case showing the use of the AcQMap high-resolution ele
Acutus Medical Receives FDA Clearance for AcQMap Cardiac Mapping Technology
Technology | EP Mapping and Imaging Systems| October 24, 2017
Acutus Medical announced that the U.S. Food and Drug Administration (FDA) has cleared the AcQMap High Resolution...
UNC School of Medicine Receives $1.7 Million for Atrial Fibrillation Program Streamlining Patient Care
News | Atrial Fibrillation| October 23, 2017
October 23, 2017 — University of North Carolina (UNC) School of Medicine cardiologist Anil Gehi, M.D., will use a $1.
Abbott SJM St. Jude Confirm RX implantable cardiac monitor (ICM).

The Abbott Confirm RX implantable cardiac monitor (ICM) is smaller than a computer thumb-drive and in implanted in a simple in-office procedure just under the skin.

Technology | Implantable Cardiac Monitor (ICM)| October 23, 2017
October 23, 2017 – The U.S.
Trial Data Shows Positive Predictive Results for Boston Scientific HeartLogic Heart Failure Diagnostic
News | Heart Failure| October 20, 2017
October 20, 2017 — Boston Scientific announced new data from the Multisensor Chronic Evaluation in Ambulatory Heart F
Smartphone Apps Help Patients and Providers Manage Atrial Fibrillation
News | Patient Engagement| October 19, 2017
October 19, 2017 — Novel smartphone and tablet applications for atrial fibrillation patients and healthcare professio
Overlay Init