Feature | Medical 3-D Printing | February 22, 2017

Children's Hospital Los Angeles Cardiologist Creates Modified Stent for 18-month-old Using Printed 3-D Model

Team uses CT heart scans to create 3-D model of obstructed pulmonary artery to fashion a smaller stent

Children's Hospital Los Angeles, CHLA, Frank Ing, 3-D printed model, pulmonary artery

Pediatric interventional cardiologist Frank Ing, M.D., chief of the Division of Cardiology and co-director of the Heart Institute at Children’s Hospital Los Angeles. Photo courtesy of Children's Hospital Los Angeles.

Children's Hospital Los Angeles, CHLA, pediatric stent, 3-D printed model, Nate Yamane

Children's Hospital Los Angeles doctors practiced customizing a stent to fit into Nate's 9-millimeter narrowing using this 3-D printed model (branch on left). The model also recreated an existing stent in Nate's other pulmonary artery branch (top right). Photo courtesy of Children's Hospital Los Angeles.

February 22, 2017 — When Children’s Hospital Los Angeles cardiologists found evidence that a portion of Nate Yamane’s pulmonary artery they had repaired once before was again narrowing, pediatric interventional cardiologist Frank Ing, M.D., decided they needed to insert a stent to keep the right artery open.

But due to the size of the narrowing, about 9 millimeters, doctors needed to customize the stent to fit into the smaller space and they wanted to perfect their measurements before the actual procedure. Using computed tomography (CT) scans of Nate’s heart, they created a 3-D printed model of the obstructed region. Ing was then able to fashion a smaller stent to fit precisely into the narrowed artery in the model.

"I have to say, the 3-D model was very helpful because it gave me confidence that [the size of the stent] was going to work," said Ing.

Born in June 2015 with tetralogy of Fallot (TOF) with pulmonary atresia, the 7.1-pound infant Yamane had trouble breathing shortly after birth. The cause: a genetic abnormality resulting in congenital heart defects that obstructed his pulmonary artery, preventing blood pumped by the heart from flowing into the lungs.

He was rushed to Children’s Hospital Los Angeles from a South Bay hospital in critical condition. Pulmonary atresia — a more severe version of TOF — occurs when the pulmonary artery fails to form properly in utero, prompting the human body to grow collateral arteries that redirect blood around the obstruction and to the lungs (a typical development with these types of blockages). About one in 10,000 children are born with this congenital heart defect.

“Imagine blood flowing in the artery like cars on the freeway, and it’s blocked. Cars exit and find an alternate route to its destination; blood does the same, and in this case finds its way through collateral vessels to the lungs,” explained Ing, the chief of the Division of Cardiology and co-director of the Heart Institute at Children’s Hospital Los Angeles.

But after birth, those vessels need to be rebuilt quickly or the heart will fail. Using a surgical technique called unifocalization, surgeons can repair the vessels by sewing them together. “We use whatever the body gives us,” explained Ing, a professor of clinical pediatrics and medicine at the Keck School of Medicine of the University of Southern California.

A month into his young life, Nate had undergone two open-heart surgeries and a catheterization procedure, but doctors were not done. In December 2015, Nate's pulmonary arteries were found to be narrowed in both the right and the left branch. At the time, a team led by Ing was able to use a balloon to open the right side. However, to keep the left section open they had to insert a stent, specially modified using a technique developed at CHLA, to fit the narrowed portion of the child's left pulmonary artery (about 15mm). Stents do not normally come that small, but by carefully cutting their smallest existing stent and folding it back upon itself, Ing tailored a functional custom stent that worked perfectly and did not jut out needlessly into other areas.

Almost immediately, Nate saw marked improvement in blood flow, including a healthy drop in blood pressure. Still, in the coming months, he gained little weight and had to grow bigger and stronger before considering another procedure. “We did physical therapy and tried to fatten him up,” said Nate’s mother, Courtney.

Watch the VIDEO "Use of 3-D Printing To Help Guide Structural Heart Intervention."

On Jan. 19, 2017, Ing inserted the second, even smaller stent into Nate’s right pulmonary artery in CHLA's catheterization lab before an international audience of cardiologists watching on a live video feed at the Pediatric and Adult Interventional Cardiac Symposium in Miami. Using the stent that was modified in advance to the same specifications in the model, Ing and his team were able to open up Nate's right pulmonary artery, with successful results; Nate’s oxygen levels improved overnight.

In the months and years ahead, Nate will need additional surgeries, but his weight is up to 21.5 lbs., and he’s eating better and getting stronger. “He’s rolling around with energy and even took his first baby steps,” said Courtney, who also has a four-year-old at home. “There’s a big difference and a lot of improvement. We’re going in the right direction.”

Read the DAIC feature story "The Future of 3-D Printing in Medicine."

For more information: www.chla.org

 

Related Congenital Heart Content:

VIDEO: Use of Virtual Reality to Aid Congenital Heart Disease — Interview with David M. Axelrod, M.D.

Bioresorbable Pulmonary Valve Replacement May Enable Cardiovascular Regeneration

VIDEO: Transcatheter Closure of Holes in the Heart — Interview with Ziyad Hijazi, M.D.

Nemours Children's Health System Uses 3-D Printing to Deliver Personalized Care

PolyVascular Awarded $2 Million Small Business Innovation Research Grant to Bring the First Polymer-Based Heart Valve for Children to Clinical Trials

Bioresorbable ASD Occluder Prepares to Enter U.S. Clinical Trial

Related Content

AMID's high definition blood flow tracking software for echocardiography.

AMID's high definition blood flow tracking software for echocardiography.

News | Advanced Visualization | May 12, 2020
May 12, 2020 — Medis acquired ...
Videos | Advanced Visualization | August 09, 2019
An example of Siemens' photo-realistic Cinematic image reconstruction.
Materialise Receives FDA Clearance for Cardiovascular Planning Software Suite
Technology | Advanced Visualization | June 13, 2019
Three-dimensional (3-D) printing software and solutions company Materialise has received U.S. Food and Drug...
Technological Advancements Expected to Drive Virtual Reality Growth in Healthcare
News | Advanced Visualization | April 04, 2019
Increasing demand for innovative diagnostic techniques, neurological disorders and increasing disease awareness are...
DrChrono and 3D4Medical Partner to Bring 3-D Interactive Modeling to Physician Practices
News | Advanced Visualization | March 18, 2019
DrChrono Inc. and 3D4Medical have teamed up so practices across the United States can access 3-D interactive modeling...
Philips Introduces IntelliSpace Portal 11 at ECR 2019
Technology | Advanced Visualization | February 27, 2019
Philips announced the launch of IntelliSpace Portal 11, the latest release of the company’s comprehensive, advanced...
Philips and Microsoft have partnered to develop an augmented reality system to help imporve workflow and procedural navigation in the cath lab. Physicians wearing visors can view and interact with true 3-D holograms above the patient on the table and manipulate the image with voice and hand motion commands to avoid breaking the sterile field. Virtual reality in the cath lab, interventional lab, hybrid OR, or cardiovascular lab.

Philips and Microsoft have partnered to develop an augmented reality system to help imporve workflow and procedural navigation in the cath lab. Physicians wearing visors can view and interact with true 3-D holograms above the patient on the table and manipulate the image with voice and hand motion commands to avoid breaking the sterile field. 

News | Advanced Visualization | February 25, 2019
Philips will unveil a new mixed reality concept developed together with Microsoft that the company says is designed for...
Medivis Launches SurgicalAR Augmented Reality Platform
Technology | Advanced Visualization | February 14, 2019
Medical imaging and visualization company Medivis officially unveiled SurgicalAR, its augmented reality (AR) technology...
Videos | Advanced Visualization | December 12, 2018
This is an example of the FDA-cleared OpenSight augmented reality (AR) system for surgical planning from NovaRad at t