Feature | November 15, 2013| Dave Fornell, DAIC editor

Micro Pacemaker May Help Revolutionize Electrophysiology

nanostim pacemaker, SJM

It was just a couple years ago in a session at the American College of Cardiology on possible science-fiction-type cardiac technologies of the future that I first saw a slide of experimental, tiny catheter-delivered pacemakers that may some day revolutionize the field of electrophysiology (EP). In October, one of those science fiction devices, the Nanostim pacemaker, was granted market clearance in Europe and it was announced the vendor is in discussions to enter U.S clinical trials. I’m sure it is the first of many new miniaturized EP devices to come that will significantly change how patients with arrhythmias are treated.

When attending cardiology conferences, I am always on the lookout for “sexy” new technologies.  This admittedly is sometimes difficult to find among a sea of academic sessions and vendors on the expo floor who are always attempting to peddle what they perceive to be the greatest invention since sliced bread. However, the Nanostim is definitely one of those rare sexy technologies that we usually only find in the fictional worlds of futuristic Hollywood movies.

The tiny device, about the size of the head of a pen, can be delivered via a delivery catheter through the venous system and placed directly into the myocardium of the right ventricle.  The system eliminates the need for surgery to create a pocket under the skin for the device, or to install traditional leads.  This greatly simplifies the procedure and reduces the risk of potential complications such as infection, or the need to remove old leads years in the future. The simplified procedure cuts implant time down to an average of 28 minutes. 

One of the biggest issues facing EP is device battery life, as patients live longer or have devices implanted at a younger age. Even with miniaturization, Nanostim’s battery is expected to have an average lifespan of more than nine years at 100 percent pacing, or more than 13 years at 50 percent. 

Speaking of battery replacement, another advantage of the system is that it was designed to be fully retrievable so it can be readily repositioned during the implant procedure, or later retrieved for normal battery replacement.

What I find more intriguing are the possibilities this type of device may have on simplifying the practice of EP, possibly offering a way to more efficiently treat larger numbers of patients at a lower cost.  The delivery of this type of device might also open the possibility of implants by new operators, such as interventional cardiologists.  This might have the biggest impact in rural areas of the United States or in developing countries, where EP specialists are often rare.  

For more on the Nanostim and other EP technology developments in 2013 click here, or watch a video showing the Nanostim implantation procedure.

Related Content

Biotronik Launchs His-Bundle Pacing Tools
News | Pacemakers | June 16, 2020
June 16, 2020 - Biotronik has today announced its commitment to giving physicians additional tools to pace in the His
Videos | Pacemakers | February 13, 2020
This video illustrates how the Micra AV leadless pacemaker is delivered via catheter and enables atrioventricular (AV
The Micra AV leadless pacemaker
News | Pacemakers | February 13, 2020
February 13, 2020 — The U.S.
Results from the MARVEL 2 (Micra Atrial Tracking Using A Ventricular accELerometer) study shows that an investigational set of algorithms in the Medtronic Micra Transcatheter Pacing System (TPS) significantly improves synchrony and cardiac function in patients with atrioventricular (AV) block. This is an impaired electrical conduction between the chambers of the heart.
News | Pacemakers | November 15, 2019
(February 2020 update — the results of this trial led to the FDA clearnace of the Micra AV device in January 2020
Co-principal investigator professor Aydin Babakhani at the UCLA Integrated Sensor Laboratory holds an earlier version of the prototype leadless, wireless amnd batteryless pacemaker. Photo Credit: Cody Duty, Texas Medical Center.

Co-principal investigator professor Aydin Babakhani at the UCLA Integrated Sensor Laboratory holds an earlier version of the prototype leadless, wireless and battery-less pacemaker. Photo Credit: Cody Duty, Texas Medical Center.

News | Pacemakers | November 13, 2019
FDA Warns of Premature Battery Depletion in Some Medtronic Pacemakers
News | Pacemakers | May 07, 2019 | Dave Fornell, Editor
The U.S. Food and Drug Administration (FDA) issued a safety communication to alert healthcare providers and patients...
Artificial Intelligence Can Improve Emergency X-ray Identification of Pacemakers
News | Pacemakers | March 29, 2019
A research team from Imperial College London believes a new software could speed up the diagnosis and treatment of...
Medtronic Recalls Dual Chamber Pacemakers
News | Pacemakers | February 20, 2019
Medtronic is recalling its dual chamber implantable pulse generators (IPGs) due to the possibility of a software error...
CHLA/USC Team Designs Novel Micropacemaker

Model of the human heart with microprocessor located in the pericardial sac and attached to the left ventricle. Graphic courtesy of Business Wire.

News | Pacemakers | June 29, 2018
Investigators at Children's Hospital Los Angeles (CHLA) and the University of Southern California (USC) have...
Permanent Pacing Effective for Older Patients With Syncope and Bifascicular Block
News | Pacemakers | May 24, 2018
Syncope with bifascicular block may be caused by intermittent complete heart block, but competing diagnoses may coexist...