News | Remote Monitoring | January 26, 2016

Japanese Researchers Catch Heartbeats With Millimeter-Wave Radar

Kyoto University and Panasonic Corp. demonstrate new remote-sensing technology

Kyoto University, Panasonic, remote heartbeat sensing, millimeter-wave radar

Japanese researchers have come up with a way to measure heartbeats remotely, in real time, and under controlled conditions with as much accuracy as electrocardiographs. The technology utilizes spread-spectrum radar to catch signals from the body and an algorithm that distinguishes heartbeats from other signals.

January 26, 2016 — Heartbeats can now be measured without placing sensors on the body, thanks to a new technology developed in Japan. Researchers at the Kyoto University Center of Innovation, together with Panasonic Corp., have come up with a way to measure heartbeats remotely, in real time, and under controlled conditions with as much accuracy as electrocardiographs.

The researchers say this will allow for the development of "casual sensing" — taking measurements as people go about their daily activities, for instance, when they are going to bed or getting ready to start the day.

"Taking measurements with sensors on the body can be stressful and troublesome, because you have to stop what you're doing," said Hiroyuki Sakai, a researcher at Panasonic. "What we tried to make was something that would offer people a way to monitor their body in a casual and relaxed environment."

The added convenience of remote sensing, the team believes, will be an incentive for people to monitor their health status for their own benefit.

The remote sensing system combines millimeter-wave spread-spectrum radar technology and a unique signal analysis algorithm that identify signals from the body.

"Heartbeats aren't the only signals the radar catches. The body sends out all sorts of signals at once, including breathing and body movement. It's a chaotic soup of information," said Toru Sato, professor of communications and computer engineering at Kyoto University. "Our algorithm differentiates all of that. It extracts waves characteristic of heart beats from the radar signal and calculates their intervals."

The team hopes the remote sensing system, with further experimentation, will be put to practical use in the near future.

"Now that we know that remote sensing is possible, we'll need to make the measurement ability more robust so that the system can monitor subjects in various age ranges and in many different contexts," Sato concluded.

For more information: www.kyoto-u.ac.jp/en

Related Content

Siemens Healthineers Showcases New In Vivo and In Vitro Cardiovascular Solutions at TCT 2018
News | Cardiac Diagnostics | September 21, 2018
At the 2018 Transcatheter Cardiovascular Therapeutics (TCT) conference, Sept. 21-25 in San Diego, Siemens Healthineers...
Weight Loss Drug Does Not Increase Cardiovascular Events
News | Cardiac Diagnostics | August 31, 2018
A weight loss drug does not increase cardiovascular events, according to late breaking results from the CAMELLIA-TIMI...
Acarix Presents CADScor System at ESC 2018
News | Cardiac Diagnostics | August 27, 2018
Acarix AB’s ultra-sensitive acoustic CADScor System for coronary artery disease risk assessment will be on display at...
NIH Ending Funding for Moderate Alcohol and Cardiovascular Health Trial
News | Cardiac Diagnostics | August 24, 2018
The National Institutes of Health announced in June it plans to end funding to the Moderate Alcohol and Cardiovascular...
Study Shows Multiple Benefits of Patient-to-Patient Connectivity in Familial Chylomicronemia Syndrome
News | Cardiac Diagnostics | August 07, 2018
Akcea Therapeutics Inc., an affiliate of Ionis Pharmaceuticals Inc., announced the publication of results from the...
Being Overweight May Change Young Adults' Heart Structure, Function
News | Cardiac Diagnostics | August 03, 2018
Even as a young adult, being overweight may cause higher blood pressure and thicken heart muscle, setting the stage for...
High Intensity Exercise in Teenagers Could Ward Off Heart Disease

Ultrasound image of the carotid artery. Lines in yellow were used to determine arterial diameter and stretching before and following exercise.

News | Cardiac Diagnostics | July 16, 2018
New research published in Experimental Physiology has indicated potential differences in heart health benefits of...
News | Cardiac Diagnostics | June 14, 2018
A team of researchers says it has linked sensitivity to an allergen in red meat to the buildup of plaque in the...
The blood of patients with familial chylomicronemia syndrome (FCS) can appear milky in color (lipemic) due to the buildup of fat in their body. Image courtesy of Akcea Therapeutics.

The blood of patients with familial chylomicronemia syndrome (FCS) can appear milky in color (lipemic) due to the buildup of fat in their body. Image courtesy of Akcea Therapeutics.

 

Feature | Cardiac Diagnostics | May 07, 2018 | Steven D. Freedman, M.D., Ph.D.
 
Overlay Init