News | Remote Monitoring | January 26, 2016

Japanese Researchers Catch Heartbeats With Millimeter-Wave Radar

Kyoto University and Panasonic Corp. demonstrate new remote-sensing technology

Kyoto University, Panasonic, remote heartbeat sensing, millimeter-wave radar

Japanese researchers have come up with a way to measure heartbeats remotely, in real time, and under controlled conditions with as much accuracy as electrocardiographs. The technology utilizes spread-spectrum radar to catch signals from the body and an algorithm that distinguishes heartbeats from other signals.

January 26, 2016 — Heartbeats can now be measured without placing sensors on the body, thanks to a new technology developed in Japan. Researchers at the Kyoto University Center of Innovation, together with Panasonic Corp., have come up with a way to measure heartbeats remotely, in real time, and under controlled conditions with as much accuracy as electrocardiographs.

The researchers say this will allow for the development of "casual sensing" — taking measurements as people go about their daily activities, for instance, when they are going to bed or getting ready to start the day.

"Taking measurements with sensors on the body can be stressful and troublesome, because you have to stop what you're doing," said Hiroyuki Sakai, a researcher at Panasonic. "What we tried to make was something that would offer people a way to monitor their body in a casual and relaxed environment."

The added convenience of remote sensing, the team believes, will be an incentive for people to monitor their health status for their own benefit.

The remote sensing system combines millimeter-wave spread-spectrum radar technology and a unique signal analysis algorithm that identify signals from the body.

"Heartbeats aren't the only signals the radar catches. The body sends out all sorts of signals at once, including breathing and body movement. It's a chaotic soup of information," said Toru Sato, professor of communications and computer engineering at Kyoto University. "Our algorithm differentiates all of that. It extracts waves characteristic of heart beats from the radar signal and calculates their intervals."

The team hopes the remote sensing system, with further experimentation, will be put to practical use in the near future.

"Now that we know that remote sensing is possible, we'll need to make the measurement ability more robust so that the system can monitor subjects in various age ranges and in many different contexts," Sato concluded.

For more information: www.kyoto-u.ac.jp/en

Related Content

News | Cardiac Diagnostics| February 17, 2017
Levels of a protein in the blood associated with heart disease are also linked to early-stage brain damage, according...
pregnant women, congenital heart disease, new recommendations, Circulation journal, UCLA
News | Womens Healthcare| February 16, 2017
February 16, 2017 — New recommendations for healthcare providers, published in the American Heart Association journal
Medtronic, expanded indication, Freezor Xtra Cryoablation Catheter, AVNRT, atrioventricular nodal re-entrant tachycardia
Technology | Ablation Systems| February 16, 2017
Medtronic plc announced the U.S. Food and Drug Administration (FDA) has approved its Freezor Xtra Cryoablation Catheter...
Biotronik, ProMRI Configurator tool, MR-conditional cardiac devices, ProMRI SystemCheck
Technology | Implantable Cardiac Monitor (ICM)| February 14, 2017
Biotronik has developed an online tool that streamlines the workflow for physicians selecting the right magnetic...
News | Hypertension| February 13, 2017
Vascular Dynamics Inc. (VDI) announced that the U.S. Food and Drug Administration (FDA) has approved the company’s...
Xarelto, rivaroxaban, COMPASS study, ends early,
News | Antiplatelet and Anticoagulation Therapies| February 09, 2017
February 9, 2017 — Janssen Research & Development LLC (Janssen) announced that the Phase 3 COMPASS trial is stopp
Penn Medicine, heart failure causes, YAP and TAZ proteins, Journal of Clinical Investigation study
News | Heart Failure| February 07, 2017
February 7, 2017 — Of the more than 700,000 Americans who suffer a heart attack each year, about a quarter go on to d
Abbott, St. Jude Medical, FDA approval, MR-conditional labeling, Assurity pacemaker, Tendril pacing lead
Technology | February 02, 2017
Abbott announced U.S. Food and Drug Administration (FDA) approval for magnetic resonance (MR)-conditional labeling for...
Ohio State, Wexner Medical Center, keeping human hearts alive, track abnormal beats, reanimate, Vadim Fedorov

Part of a donated human heart is reanimated and recorded with four high-definition optic cameras in a laboratory at The Ohio State University Wexner Medical Center. Researchers keep the heart tissue alive to look for the causes of irregular heartbeats in cases of persistent atrial fibrillation. Image courtesy of The Ohio State University Wexner Medical Center.

News | EP Lab| February 01, 2017
Researchers have developed a technique that allows them to revive parts of human hearts in the laboratory for up to 12...
Sponsored Content | Webinar | Inventory Management| February 01, 2017
How healthy is your cath lab supply chain?
Overlay Init