News | Remote Monitoring | January 26, 2016

Japanese Researchers Catch Heartbeats With Millimeter-Wave Radar

Kyoto University and Panasonic Corp. demonstrate new remote-sensing technology

Kyoto University, Panasonic, remote heartbeat sensing, millimeter-wave radar

Japanese researchers have come up with a way to measure heartbeats remotely, in real time, and under controlled conditions with as much accuracy as electrocardiographs. The technology utilizes spread-spectrum radar to catch signals from the body and an algorithm that distinguishes heartbeats from other signals.

January 26, 2016 — Heartbeats can now be measured without placing sensors on the body, thanks to a new technology developed in Japan. Researchers at the Kyoto University Center of Innovation, together with Panasonic Corp., have come up with a way to measure heartbeats remotely, in real time, and under controlled conditions with as much accuracy as electrocardiographs.

The researchers say this will allow for the development of "casual sensing" — taking measurements as people go about their daily activities, for instance, when they are going to bed or getting ready to start the day.

"Taking measurements with sensors on the body can be stressful and troublesome, because you have to stop what you're doing," said Hiroyuki Sakai, a researcher at Panasonic. "What we tried to make was something that would offer people a way to monitor their body in a casual and relaxed environment."

The added convenience of remote sensing, the team believes, will be an incentive for people to monitor their health status for their own benefit.

The remote sensing system combines millimeter-wave spread-spectrum radar technology and a unique signal analysis algorithm that identify signals from the body.

"Heartbeats aren't the only signals the radar catches. The body sends out all sorts of signals at once, including breathing and body movement. It's a chaotic soup of information," said Toru Sato, professor of communications and computer engineering at Kyoto University. "Our algorithm differentiates all of that. It extracts waves characteristic of heart beats from the radar signal and calculates their intervals."

The team hopes the remote sensing system, with further experimentation, will be put to practical use in the near future.

"Now that we know that remote sensing is possible, we'll need to make the measurement ability more robust so that the system can monitor subjects in various age ranges and in many different contexts," Sato concluded.

For more information: www.kyoto-u.ac.jp/en

Related Content

Sponsored Content | Videos | EP Lab| May 26, 2017
DAIC Editor Dave Fornell takes a tour of some of the most innovative new electrophysiology (EP) technology at the 201
Sponsored Content | Videos | Leads Implantable Devices| May 25, 2017
Bruce Wilkoff, M.D., director of cardiac pacing and tachyarrhythmia devices at Cleveland Clinic, discusses advancemen
Biotronik Home Monitoring implanted EP device remote wireless monitoring system
News | May 24, 2017
May 23, 2017 – Results now published in the European Heart Journal show Biotronik Home Monitoring reduces th
Sponsored Content | Videos | Pacemakers| May 23, 2017
Vivek Reddy, M.D., director of cardiac arrhythmia services and professor of medicine, cardiology, Mount Sinai Hospita
Sponsored Content | Videos | Cardiac Resynchronization Therapy Devices (CRT)| May 23, 2017
This video, provided by ERB, demonstrates the function and implantation of the WiSE CRT (Wireless Stimulation Endocar
Consumers Warned About Accuracy of Heart Rate Apps in New Study
News | Mobile Devices| May 22, 2017
May 22, 2017 — Consumers are being warned about the accuracy of heart rate apps after a study found huge variability
Sponsored Content | Videos | Atrial Fibrillation| May 17, 2017
Hugh Calkins, M.D., FACC, FAHA, FHRS, director of cardiac arrhythmia services and professor of medicine at Johns Hopk
Biosense Webster multi-electrode RF ablation balloon

Biosense Webster's multi-electrode RF ablation balloon with irrigation. The system allows operators to change the energy levels of each electrode to avoid damaging sensitive underlying critical structures like the esophagus or phrenic nerve.

Feature | Ablation Systems| May 17, 2017 | Dave Fornell
May 17, 2017 – Clinical trial results from a first-in-human study evaluating the acute feasibility of an investigatio
Sponsored Content | Videos | EP Lab| May 17, 2017
This video, provided by Spectranetics, demonstrates how to deploy the Bridge Occlusion Balloon used to seal accidenta
Overlay Init