News | Congenital Heart | November 02, 2022

New 3D Model Shows How Cadmium Exposure May Affect Heart Development

NIH researchers develop new tools to demonstrate how environmental agents can lead to diseases

2D model showing how the pluripotent stem cells react to human relevant doses of cadmium over 8 days. From the control in the first panel, to the last panel, researchers can see how the differentiation to cardiomyocytes is inhibited with different doses of cadmium.

2D model showing how the pluripotent stem cells react to human relevant doses of cadmium over 8 days. From the control in the first panel, to the last panel, researchers can see how the differentiation to cardiomyocytes is inhibited with different doses of cadmium. 


November 2, 2022 —  Researchers have developed a three-dimensional model that shows how exposure to cadmium might lead to congenital heart disease. Affecting nearly 40,000 newborns a year, congenital heart disease is the most common type of birth defect in the United States. The model was created by scientists at the National Institute of Environmental Health Sciences (NIEHS), part of the National Institutes of Health.

Cadmium is a metal that can be released into the environment through mining and various industrial processes, and it has been found in air, soil, water, and tobacco. The metal can enter the food chain when plants absorb it from soil. Previous studies suggested that maternal exposure to cadmium might be a significant risk factor for congenital heart disease.

Using models derived from human cells and tissues, called in vitro models, researchers designed a 3D organoid model that mimics how the human heart develops. The researchers saw how exposure to low levels of cadmium can block usual formation of cardiomyocytes, which are the major type of cells that form the heart. In doing so, they revealed the biological mechanisms that might explain how cadmium could induce heart abnormalities.

“The models we created are useful for not only studying cadmium, but for studying other chemicals and substances as well,” said study lead Erik Tokar, Ph.D., from the Mechanistic Toxicology Branch of the NIEHS Division of Translational Toxicology (DTT).

For the study, the researchers developed three different models to evaluate the effects of cadmium on different stages of heart development.

First, they used human pluripotent stem cells to develop 3D embryoid bodies to mimic early steps in tissue and organ formation in humans. They then used a 2D in vitro model that included a fluorescent regulatory protein system (NKX2-5) known to be involved in heart development, which allowed them to look at cadmium toxicity after exposure.

The 3D cardiac organoid model, which can simulate the beating heart, confirmed what was seen in the other two models, showing how low doses of cadmium can inhibit the cardiomyocytes from functioning properly.

The study, published in the journal Environmental Health Perspectives, builds on decades of work by toxicology researchers to advance knowledge about how environmental exposures may contribute to human diseases including cancer, cardiovascular disease, autism, and other conditions.

“These new models are leveraging advances in technology that allow us to model human biology in a way that identifies real human health hazards,” noted Brian Berridge, D.V.M., Ph.D., scientific director, DTT. “They also help reduce our reliance on animal testing.”

“We found that early exposure to human-relevant levels of cadmium lead to a dramatic inhibitory effect on cardiomyocyte differentiation, whereas later stage exposures did not have this effect,” said Xian Wu, Ph.D., who conducted these studies. “This cadmium exposure also damaged the cardiac organoid functionality.”

Grants: This research was supported by the Intramural Research Program (Translational Toxicology Division) of the NIH, NIEHS (ZIAES102925).

For more information: www.nih.gov

Reference

Wu X, Chen Y, Hu G, and Tokar EJ. 2022. Cardiac Development in the Presence of Cadmium: An in vitro Study Using Human Embryonic Stem Cells and Cardiac Organoids. Environmental Health Perspectives. https://ehp.niehs.nih.gov/doi/10.1289/EHP11208.


Related Content

News | Cardiovascular Clinical Studies

April 24, 2024 —Hello Heart, a digital leader in preventive heart health, today announced results from its latest study ...

Home April 24, 2024
Home
News | Cardiovascular Clinical Studies

April 22, 2024 — Corvia Medical, Inc, a company dedicated to transforming the treatment of heart failure, welcomes the ...

Home April 22, 2024
Home
News | Cardiovascular Clinical Studies

April 16, 2024 — CVRx, Inc., a commercial-stage medical device company, announced today the availability of additional ...

Home April 16, 2024
Home
News | Cardiovascular Clinical Studies

April 11, 2024 — Transcatheter aortic valve replacement (TAVR) was found to bring no increased risks and was associated ...

Home April 11, 2024
Home
News | Cardiovascular Clinical Studies

April 11, 2024 — People with a buildup of fatty atherosclerotic plaque in the heart’s arteries considered at risk of ...

Home April 11, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — Patients who took an angiotensin-converting enzyme (ACE) inhibitor while undergoing cancer treatment ...

Home April 09, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — One of the first studies to attempt to treat early-stage heart failure in patients with Type 2 diabetes ...

Home April 09, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — The investigational drug ninerafaxstat showed a good tolerability and safety profile, along with ...

Home April 09, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — Administering tranexamic acid (TxA), a drug used to reduce bleeding during heart surgery, topically ...

Home April 09, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — Using a web application to qualify individuals for treatment with a nonprescription statin closely ...

Home April 09, 2024
Home
Subscribe Now