News | Intravascular Imaging | May 25, 2016

New Technology Allows Even Deeper Look into Fatty Arteries

Researchers demonstrate how a highly sensitive photoacoustic catheter probe has the potential to help better identify heart disease

IVPA, intravascular photoacoustic imaging, fatty arteries, Purdue, Shanghai

IVPA/IVUS imaging of a perfused fresh human right coronary artery dissected from an explanted heart. (A) IVPA image. (B) IVUS image. (C) Merged IVPA/IVUS image. The 1 mm scale bar applies to all panels.

May 19, 2016 — A new imaging system known as intravascular photoacoustic (IVPA) imaging that produces three-dimensional images of the insides of arteries has the potential to help doctors diagnose plaques on the brink of rupturing. But scientists have struggled to develop imaging instruments that meet clinical requirements while illuminating arteries to a useful depth and at quick enough speeds.

Now, a team of researchers from Purdue University, Indiana University School of Medicine, Indiana, and the Shanghai Institute of Optics and Fine Mechanics, Shanghai, China, have improved upon previous instruments, developing a new IVPA catheter design with collinear overlap between optical and acoustic waves with a tiny probe. The design can greatly improve the sensitivity and imaging depth of IVPA imaging, revealing fatty arteries in all of their unctuous detail.

As plaque accumulates on the inside of arteries, it can cause the arteries to thicken and harden. When that plaque ruptures, it can ultimately block blood flow and lead to a heart attack, stroke or other problem throughout the body.

The condition, known as atherosclerosis, is a major form of cardiovascular disease, which over the past century has become the leading cause of death worldwide. Currently, no imaging tools are available to consistently and accurately diagnose plaque at risk of rupturing in living patients.

"The most exciting part of this work, which will be reported at the upcoming CLEO [Conference on Lasers and Electro-Optics] 2016 conference, is the collinear design of the catheter that enables the intravascular photoacoustic imaging system to see much deeper and much more lipid information in the arteries," said the first author Yingchun Cao, a postdoctoral fellow in Professor Ji-Xin Cheng’s group at Purdue University in West Lafayette, Ind. "That could provide valuable help for the doctor to better identify and diagnose the plaque vulnerability in patients."

IVPA imaging works by measuring ultrasound signals from molecules exposed to a light beam from a fast-pulsing laser. The new probe allows the optical beam and sound wave to share the same path all the way during imaging — that's the "collinear" overlap part — rather than cross overlap as in previous designs.

This increases the sensitivity and the imaging depth of the instrument, allowing for high-quality IVPA imaging of a human coronary artery over 6 mm in depth — from the lumen, the normally open channel within arteries, to perivascular fat, which surrounds the outside of most arteries and veins.

The Cheng laboratory had previously tried a design based on a ring-shaped transducer to accomplish the same collinear overlap idea. But the size of the transducer prevented its further application in clinic. The team came up with the current design by transmitting the optical wave while reflecting the sound wave on an angled surface. "It wasn't easy," said Cheng. "We tried different fibers, micro mirrors, and various assembly methods. Fortunately, we finally got this idea to work."

For more information: www.nature.com/srep

Related Content

Treatment of Heart Attack Patients Depends on Cancer History
News | Cardio-oncology| September 26, 2017
Treatment of heart attack patients depends on their history of cancer, according to research published recently in...
Tryton Side Branch Stent Recognized With Premier Technology Breakthrough Award
News | Stents Bifurcation| September 21, 2017
September 21, 2017 — Cardinal Health and Tryton Medical Inc.
DISRUPT BTK Study Shows Positive Results With Lithoplasty in Calcified Lesions Below the Knee
News | Peripheral Artery Disease (PAD)| September 20, 2017
Shockwave Medical reported positive results from the DISRUPT BTK Study, which were presented at the annual...
Corindus Announces First Patient Enrolled in PRECISION GRX Registry
News | Robotic Systems| September 18, 2017
September 18, 2017 — Corindus Vascular Robotics Inc.
Two-Year ILLUMENATE Trial Data Demonstrate Efficacy of Stellarex Drug-Coated Balloon
News | Drug-Eluting Balloons| September 18, 2017
Philips announced the two-year results from the ILLUMENATE European randomized clinical trial (EU RCT) demonstrating...
Sentinel Cerebral Protection System Significantly Reduces Stroke and Mortality in TAVR
News | Embolic Protection Devices| September 18, 2017
September 18, 2017 – Claret Medical announced publication of a new study in the...
Fysicon Receives FDA Approval for QMAPP Hemodynamic Monitoring System
Technology | Hemodynamic Monitoring Systems| September 18, 2017
Fysicon announced that it has been granted 510(k) clearance by the U.S. Food and Drug Administration (FDA) for its...
Peter Schneider, M.D. presents late breaking clinical trial results at VIVA 17 in Las Vegas. Panelists (l to r) Krishna Rocha-Singh, M.D., Sean Lyden, M.D., John Kaufman, M.D., Donna Buckley, M.D.

Peter Schneider, M.D. presents late breaking clinical trial results at VIVA 17 in Las Vegas. Panelists (l to r) Krishna Rocha-Singh, M.D., Sean Lyden, M.D., John Kaufman, M.D., Donna Buckley, M.D.

Feature | Cath Lab| September 14, 2017
September 14, 2017 — Here are quick summaries for all the key late-breaking vascular and endovascular clinical trials
Mississippi Surgical and Vascular Center Uses Toshiba Ultimax-i FPD to Save Patients' Limbs
News | Angiography| September 14, 2017
The southern U.S. sees some of the highest numbers of chronic medical conditions, such as peripheral artery disease...
Sponsored Content | Videos | Structural Heart Occluders| September 13, 2017
Ziyad Hijazi, M.D., MPH, MSCAI, FACC, director of the cardiac program and chair of the Department of Pediatrics at Si
Overlay Init