Videos | Genetic Testing | November 22, 2021

VIDEO: Use of Genetic Testing to Tailor Lipid Lowering Therapies

Susan Cheng, M.D., MPH, director of the Institute for Research on Healthy Aging in the Department of Cardiology at Cedars-Sinai, moderated the Best Science in Cardiovascular Genetics and Genomics: Building Blocks to Better Outcomes, at the American Heart Association (AHA) 2021 meeting. She is an expert in cardiac genetic testing and said tailoring LDL-lowering drug therapy based on routine genetic tests is coming, but is still a few years off.

Find more AHA 2021 late-breaking studies and video

185 Views

Recent Videos View all 634 items

Cardiac Imaging | February 01, 2022

Interview with Campbell Rogers, M.D., chief medical officer of HeartFlow which has developed a CT image-based fractional flow reserve (FFR-CT) algorithm. The technology was recently included as a recommendation for front line chest pain evaluations in the 2021 ACC/AHA chest pain evaluation guidelines.

The new guidelines gave high levels of evidence for the use of computed tomography and FFR-CT cardiac imaging as front line imaging modalities for chest pain evaluation.

Related Chest Pain Imaging Content:

First International Chest Pain Diagnosis Guidelines Released

VIDEO: Why the ASNC Did Not Endorse the 2021 Chest Pain Guidelines — Interview with ASNC President Dennis Calnon, M.D.

 

Coronavirus (COVID-19) | February 01, 2022

Campbell Rogers, M.D., chief medical officer of HeartFlow, explains how hospitals are using CT image-based fractional flow reserve (FFR-CT) assessments to speed throughput of patients in emergency rooms and reduce the need for diagnostic angiograms during the COVID-19 pandemic.

 

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Sponsored Videos View all 42 items

Cath Lab | January 13, 2022

Advancements in analytics and data visualizations are helping to streamline operations and improve productivity at cath labs across the country. Kootenai Health in Coeur d'Alene Idaho has a single cath lab performing more than 2,000 cases per year. Diane Penkert, executive director of heart and vascular services, discusses how the implementation of the Philips Performance Bridge analytics platform has enabled them to better leverage cardiovascular procedure data.

Information Technology | April 17, 2019

With Intellispace Enterprise Edition as the foundation, Philips Healthcare is connecting facilities and service areas within enterprises, while developing standards-based interoperability that preserves customers' investments and best of breed systems. 

Hemodynamic Support Devices | March 06, 2019

Perwaiz Meraj, M.D., FACC, FSCAI, director of interventional cardiology, assistant professor, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System discusses the importance of hemodynamic support to safely perform a percutaneous coronary intervention (PCI) with prior coronary artery bypass graft (CABG) surgery and comorbidities. Learn more at ProtectedPCI.com/DAIC.

In this video, Meraj discuss a complex coronary intervention of a 77-year-old woman with stage 4 CKD, prior CABG, hypertension, hyperlipidemia, diabetes, who presented with angina and NSTEMI with an ejection fraction of 40 percent. The team at Northwell consulted with cardiac surgeons and the heart team, and determined that this patient was too high risk for another bypass surgery. Read more on this case.
 

Related Impella Video Content:

VIDEO: Analysis of Outcomes for 15,259 U.S. Patients with AMICS Supported with the Impella Device — Interview with William O'Neill, M.D.

VIDEO: The Door-to-Unloading (DTU) STEMI Safety and Feasibility Trial — Interview with Navin Kapur, M.D.

VIDEO: Cardiogenic Shock Case with Impella CP Support — Case study with Michael Amponsah, M.D.,

 

 

Heart Failure | February 13, 2019

William O'Neill, M.D., highlights best practice protocols based on Impella Quality database and real-world evidence showing improved outcomes in cardiogenic shock. Learn more at ProtectedPCI.com/DAIC

 

Related Impella Video Content:

VIDEO: Complex PCI Involving Prior CABG and Comorbidities — Interview with Perwaiz Meraj, M.D.

VIDEO: The Door-to-Unloading (DTU) STEMI Safety and Feasibility Trial — Interview with Navin Kapur, M.D.

VIDEO: Cardiogenic Shock Case with Impella CP Support — Case study with Michael Amponsah, M.D.,

 

Conference Coverage View all 455 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

Cath Lab View all 316 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

Cardiac Imaging View all 282 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

Cardiac Diagnostics View all 78 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

EP Lab View all 82 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

Information Technology View all 167 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

Subscribe Now