Feature | Radiation Dose Management | May 12, 2016| Lori Webb, R.T. (R) and Tom Watson, RCVT

Radiation Dose Management Trends and Best Practices

Addressing radiation dose will require an organized and coordinated effort from many within the medical industry, regulatory agencies and professional associations, medical professionals and the patients themselves

Radiation dose management, radiation dose monitoring, X-ray dose

Analytics from Sectra’s radiation dose monitoring software showing procedures where dose levels were higher than normal for various X-ray modalities. 

Healthcare organizations, clinicians and medical equipment manufacturers have long focused on the management and reduction of radiation dose. With the increased availability of and reliance on high-dose imaging modalities for rapid and comprehensive diagnosis and treatment, the need for better radiation dose management has only increased. Addressing this issue will require an organized and coordinated effort from many within the medical industry, regulatory agencies and professional associations, medical professionals and the patients themselves. The involvement of these four main pillars is essential for creating meaningful, sustainable advances in this field.

Industry

Medical system manufacturers associated with ionizing radiation equipment must continue to improve their technology and reduce or minimize the amount of radiation exposure required to produce high-quality images. Many vendors have already incorporated coordinated dose reporting and dose management capabilities into their systems. Some companies have begun to introduce new systems that blend software management capabilities with new hardware and imaging chain capabilities to offer decreasing levels of radiation exposure without compromising image quality. A number of medical imaging and cardiology vendors have active dose management and dose reduction programs in place within their systems. 

Regulatory Agencies and Professional Associations 

Regulatory agencies have the responsibility to establish clear and meaningful standards that set the industry’s guidelines for not only equipment manufacturers, but also healthcare professionals’ use of ionizing radiation. It is challenging to compile this tremendous amount of information related to patients, operators and organizations. However, it is essential to do so in order to benchmark exposure data and utilization trends against established guidelines and national standards.

Several organizations, namely the American College of Cardiology (ACC), American College of Radiology (ACR), American Association of Physicists in Medicine (AAPM) and National Council on Radiation Protection and Measurements (NCRP), have collaborated to create reference guidelines for acceptable radiation dose based on both collected data and evolving trends. Although some institutions are taking advantage of these resources, it will be up to each organization to be proactive in maximizing the tools available.

Aside from the U.S. Food and Drug Administration’s (FDA) 2010 “Initiative to Reduce Unnecessary Radiation Exposure from Medical Imaging” and the availability of online resources from the FDA, there are currently no set national guidelines related to the documentation of radiation dose. Because of this, hospitals must follow current state mandates. In California and Connecticut, imaging professionals have already been tasked with documenting the dose from all computed tomography (CT) studies. Texas has taken this mandate a step further by requiring not only CT dose data, but also fluoroscopy exams, as well.   

The ACR has also built the National Radiology Data Registry (NRDR), which serves to collect, manage and benchmark dose information, as well as other related exam data, in the absence of a national standard for radiation dose. Additionally, in an aggressive effort toward optimizing patient dose across the industry in the United States, the Medical Imaging and Technology Alliance (MITA) developed the MITA Smart Dose CT initiative, XR 29, which became a law in 2014. This rule mandates that beginning in 2016, CT units must adhere to the MITA standard in order for organizations to receive premium Medicare reimbursement levels.

Medical Professionals

Although much of the responsibility falls on equipment manufacturers to create tools for managing and reducing dose, there is also some responsibility on behalf of the medical professionals using the technology. Currently, there is a substantial disparity in how medical imaging and cardiology exams are ordered according to pathologies, patient histories and physician preference. When a patient’s treatment plan involves the decision of when or whether to use ionizing radiation, it is important for clinicians to understand when to consider employing alternative imaging modalities. The physician community needs to discuss these lower-dose or no-dose options when clinically appropriate.

Making great strides toward this goal, the ACR and ACC, in parallel efforts, have established criteria programs that provide the referring physician community with evidence-based guidelines to consider when deciding whether to employ ionizing radiation as a part of diagnosing or treating a patient. Programs like these are especially important in pediatric imaging because most of the known dose values and trends correspond to adult but not to pediatric levels. In order to actively reduce the levels of radiation dose within pediatric imaging exams, we need to continue building upon existing data present in the ACR’s Dose Index Registry (DIR). 

This will help to supplement the current efforts, which include modifying exam protocols, making technical changes to medical imaging equipment, and implementation and following through on dose awareness and reduction campaigns. Movements such as Image Gently, Image Wisely and Step Lightly have done a great job at highlighting the concern of pediatric dose. They have also facilitated more educational opportunities for imaging professionals to minimize dose and maintain image quality when possible. 

Once the decision has been made to incorporate ionizing radiation into the treatment or diagnosis path, both the equipment end users and radiologists have the responsibility to help manage radiation dose. This begins with the operator being qualified, well trained and held accountable for use of the equipment. Within the market, there is a large disparity in imaging exam protocols among physicians and technologists. Comprehensive training on the equipment and exam protocols is needed to optimize dose and image quality simultaneously.

Many times, radiologists actively collaborate with referring physicians in the selection of medical imaging procedures, recommendations for follow-up imaging, exam protocols and the number of images needed for various procedures. This is especially true when using live fluoroscopy, which correlates to higher dose levels. Because of this, it’s vital that radiologists of all subspecialties have complete buy-in for an organization’s dose management program and continue to educate hospital staff and referring physicians.

It is also incumbent on the hospital to ensure the equipment is well-maintained through service and preventive maintenance. In addition, an organization’s radiation safety program must remain a priority, with dedicated staff responsible for overseeing the implementation and continued adherence to the plan.

Another area of concern is the effort in reducing repeat exams. It’s paramount to establish seamless access to prior and related studies. We must also take strides to overcome the current challenges in IT system interoperability that exist when a patient’s historical portfolio of images and reports needs to be available to all clinicians involved in patient care.  

 

Comparison Chart

This article appeared in the May-June 2016 print issue of DAIC as an introduction for a comparison chart of radiation dose monitoring software. The chart can be found at the "comparison charts" tab at the top of the web page. Participant vendors include: 

Agfa Healthcare
www.agfahealthcare.com

Bayer Healthcare
www.radiologysolutions.bayer.com 

GE Healthcare
www.gehealthcare.com

Imalogix
www.imalogix.com

Medic Vision
www.medicvision.com

Novarad
www.novarad.net

PACSHealth
www.dosemonitor.com

Philips Healthcare
www.usa.philips.com/healthcare

ScImage
www.scimage.com

Sectra
www.sectra.com

Siemens Healthcare
www.siemens.com/healthcare 

Toshiba America
www.medical.toshiba.com

 

Related Cardiac CT Dose Articles and Videos:

• VIDEO: Radiation Dose Monitoring in Medical Imaging

• National Dose Levels Established for 10 Common Adult CT Examinations

• CT Cancer Risk Poorly Understood by Many Healthcare Providers

•  University of California Study Searches for Consistent CT Dose Best Practices
 

Related Content

Mentice and Siemens Healthineers Integrate VIST Virtual Patient With Artis Icono Angiography System
Technology | Angiography | June 24, 2019
Siemens Healthineers and Mentice AB announced the collaboration to fully integrate Mentice’s VIST Virtual Patient into...
Medis QAngio XA 3D Receives FDA 510k Clearance
Technology | Angiography | June 04, 2019
Medis Medical Imaging Systems B.V. has received clearance from the U.S. Food and Drug Administration for its QAangio XA...
iSchemaView Launches RAPID Angio
Technology | Angiography | March 01, 2019
iSchemaView announced the release of RAPID Angio, a complete neuroimaging solution for the angiography suite that...
Videos | Angiography | February 08, 2019
This is an example of an arterial venous malformation (AVM) in the brain imaged on a ...
Canon Medical Debuts Alphenix 4-D CT at RSNA 2018
Technology | Angiography | February 06, 2019
Canon Medical Systems USA Inc. recently introduced a new angiography configuration featuring its Alphenix Sky + C-arm...
Canon Medical Systems Launches Alphenix Interventional Imaging Line
Technology | Angiography | February 04, 2019
Canon Medical Systems USA recently introduced its next generation of interventional systems – the Alphenix platform....
An example of multimodality image fusion with live angiography to enhance soft-tissue visualization during complex procedures. This example is from Siemen's new TrueFusion software released in 2018. Advances in angiography imaging.

An example of multimodality image fusion with live angiography to enhance soft-tissue visualization during complex procedures. This example is from Siemen's new TrueFusion software released in 2018. 

Feature | Angiography | January 28, 2019 | Dave Fornell, Editor
There are a few recent trends in X-ray...
Philips Launches Azurion With FlexArm
Technology | Angiography | January 17, 2019
Philips announced the launch of Azurion with FlexArm, designed to enhance positioning flexibility for image-guided...
Videos | Angiography | December 12, 2018
This is a quick walk around of a GE Healthcare Image Guided System (IGS) angiography system cath lab room display at
Shimadzu Medical Systems Teams With Change Healthcare Cardiology
News | Angiography | October 17, 2018
Shimadzu Medical Systems USA and Change Healthcare have entered a partnership through which Shimadzu will offer Change...
Overlay Init