Dave Fornell, DAIC Editor

Dave Fornell, Editor DAIC

Blog | Dave Fornell, DAIC Editor | November 15, 2013

Micro Pacemaker May Help Revolutionize Electrophysiology

By Dave Fornell, DAIC editor

It was just a couple years ago in a session at the American College of Cardiology on possible science-fiction-type cardiac technologies of the future that I first saw a slide of experimental, tiny catheter-delivered pacemakers that may some day revolutionize the field of electrophysiology (EP). In October, one of those science fiction devices, the Nanostim pacemaker, was granted market clearance in Europe and it was announced the vendor is in discussions to enter U.S clinical trials. I’m sure it is the first of many new miniaturized EP devices to come that will significantly change how patients with arrhythmias are treated.

When attending cardiology conferences, I am always on the lookout for “sexy” new technologies.  This admittedly is sometimes difficult to find among a sea of academic sessions and vendors on the expo floor who are always attempting to peddle what they perceive to be the greatest invention since sliced bread. However, the Nanostim is definitely one of those rare sexy technologies that we usually only find in the fictional worlds of futuristic Hollywood movies.

The tiny device, about the size of the head of a pen, can be delivered via a delivery catheter through the venous system and placed directly into the myocardium of the right ventricle.  The system eliminates the need for surgery to create a pocket under the skin for the device, or to install traditional leads.  This greatly simplifies the procedure and reduces the risk of potential complications such as infection, or the need to remove old leads years in the future. The simplified procedure cuts implant time down to an average of 28 minutes. 

One of the biggest issues facing EP is device battery life, as patients live longer or have devices implanted at a younger age. Even with miniaturization, Nanostim’s battery is expected to have an average lifespan of more than nine years at 100 percent pacing, or more than 13 years at 50 percent. 

Speaking of battery replacement, another advantage of the system is that it was designed to be fully retrievable so it can be readily repositioned during the implant procedure, or later retrieved for normal battery replacement.

What I find more intriguing are the possibilities this type of device may have on simplifying the practice of EP, possibly offering a way to more efficiently treat larger numbers of patients at a lower cost.  The delivery of this type of device might also open the possibility of implants by new operators, such as interventional cardiologists.  This might have the biggest impact in rural areas of the United States or in developing countries, where EP specialists are often rare.  

For more on the Nanostim and other EP technology developments in 2013 click here, or watch a video showing the Nanostim implantation procedure.

Related Content

The Optimize EP CaRM software integrates data from several EP devices a patients may use and aggregate it into one location.

The Optimize EP CaRM software integrates data from several EP devices a patients may use and aggregate it into one location. 

News | EP Lab | February 02, 2021
February 2, 2021 – Optimize EP, a digital health company focused on transforming cardiac care by improving the curren
Attune Medical’s ensoETM is a single use thermal regulating device that is placed in the esophagus similar to a standard gastric tube and connected to an external heat exchange unit, creating a closed-loop system for heat transfer to increase or decrease patient temperature. Its placement in the esophagus, with proximity to blood flow from the heart and great vessels, allows highly efficient heat transfer. EPs are now looking at the device as a way to prevent RF damage to the esophagus during ablations.

Attune Medical’s ensoETM is a single use thermal regulating device that is placed in the esophagus similar to a standard gastric tube and connected to an external heat exchange unit, creating a closed-loop system for heat transfer to increase or decrease patient temperature. EPs are now looking at the device as a way to prevent RF damage to the esophagus during cardiac ablations.
 

News | EP Lab | December 03, 2020
December 3, 2020 – Attune Medical reports the first major peer-reviewed clinical publication using its ensoETM device
News | EP Lab | October 08, 2020
October 8, 2020 — Galaxy Medical, a developer of pulsed electric field (PEF) technology for the treatment of cardiac
The Farapulse pulsed field ablation (PFA) system, also referred to as electroporation,  ablates heart tissue using the creation of an electric field instead of using thermal energy sources such as radiofrequency ablation or cryoablation.

The Farapulse pulsed field ablation (PFA) system ablates heart tissue using the creation of an electric field instead of using thermal energy sources such as radiofrequency ablation or cryoablation.
 

News | EP Lab | September 23, 2020
September 23, 2020 — Boston Scientific Corp.
A conformal array of flexible electrodes affixed to an inflated balloon catheter. The sensors have the ability to make measurements of temperature, force of contact and electrophysiological parameters, ability to customize diagnostic and therapeutic functions and offer real-time feedback. Photo by John Rogers, Northwestern University.

A conformal array of flexible electrodes affixed to an inflated balloon catheter. The sensors have the ability to make measurements of temperature, force of contact and electrophysiological parameters, ability to customize diagnostic and therapeutic functions and offer real-time feedback. Photo by John Rogers, Northwestern University.

News | EP Lab | September 08, 2020
September 8, 2020 — Researchers developed a new class of medical instruments equipped with an advanced soft electroni
Biosense Webster's Carto Prime Mapping Module offers new tools to help shorten ablation time. Left is an example of Coherent imaging showing conduction identification, conduction velocity vectors and conduction barrier zones. Top right, Carto Finder Module automatic visualization of region of interest. Below right, LAT Hybrid imaging, showing correct identification of PVC location based on catheter location in sinus rhythm, and automated visualization of PVC points.

Biosense Webster's Carto Prime Mapping Module offers new tools to help shorten ablation time. Left is an example of Coherent imaging showing conduction identification, conduction velocity vectors and conduction barrier zones. Top right, Carto Finder Module automatic visualization of region of interest. Below right, LAT Hybrid imaging, showing correct identification of PVC location based on catheter location in sinus rhythm, and automated visualization of PVC points.

News | EP Lab | September 03, 2020
September 3, 2020 – Biosense Webster launched its Carto 3 System Version 7 and the Carto Prime Mapping Module to enha