News | EP Mapping and Imaging Systems | August 19, 2019

Computer Simulations May Treat Most Common Heart Rhythm Disorder

Johns Hopkins researchers use MRI-derived simulations to eliminate trial and error from catheter ablation procedures

Computer Simulations May Treat Most Common Heart Rhythm Disorder

The OPTIMA (Optimal Target Identification via Modelling of Arrhythmogenesis) simulator uses contrast-enhanced MRI scans to create personalized digital replicas of a patient's heart to guide catheter abation for atrial fibrillation. Image courtesy of Patrick M. Boyle and Natalia A. Trayanova.

August 19, 2019 — Scientists at Johns Hopkins have successfully created personalized digital replicas of the upper chambers of the heart and used them to guide the precise treatment of patients suffering from persistent irregular heartbeats. These simulations accurately identified where clinicians need to destroy tissue to restore the heart’s normal rhythm.

The proof-of-concept study, published in Nature Biomedical Engineering on August 19,1 is a promising step towards simulation-driven treatments and sets the stage for the team’s U.S. Food and Drug Administration (FDA)-approved clinical trial slated to begin this fall.

“The personalized digital replicas allowed us to accurately simulate and analyze heart electrical activity in 10 patients and determine where tissue needs to be destroyed,” said Natalia Trayanova, the Murray B. Sachs Professor in the Department of Biomedical Engineering at The Johns Hopkins University Schools of Engineering and Medicine. “The beauty of working with such replicas is that we could test for and predict where irregular heartbeats persist in ways we never could in the clinic. We ran a mock of the clinical procedure over and over again, until we were sure irregular beats will not re-emerge.”

This approach has the potential to eliminate the process of trial-and-error in treating such heart rhythm disorders and to prevent repeat procedures, said Trayanova.

Atrial fibrillation, or abnormal electrical signals stemming from the heart’s two upper chambers, is the most common cause of irregular heartbeats and affects 1-2 percent of people worldwide. If left untreated, atrial fibrillation can cause fatal strokes.

The typical treatment for the disorder, called catheter ablation, is to thread a catheter emitting radio frequency into the heart to destroy tissue that sends off erratic electrical signals. Specifically, cardiologists will destroy tissue around the atria’s four pulmonary veins, which is where researchers believe the misfiring signals usually begin.

However, a subset of patients with a persistent form of atrial fibrillation and scarring in the atria (fibrosis) do not benefit from receiving standard lesions around the pulmonary veins. They often have to undergo multiple procedures because abnormal signals keep emerging from new areas of their atria. With each procedure, new scar tissue forms, which changes the atria’s electrical activity and makes targeting of the misfiring areas that much harder.

The team’s personalized simulation-driven guidance of the ablation procedure, called Optimal Target Identification via Modelling of Arrhythmogenesis (OPTIMA), used contrast-enhanced magnetic resonance imaging (MRI) scans from 10 patients at the Johns Hopkins Hospital to create personalized digital replicas of the diseased atria.

For each personalized model, the team ran initial simulations to predict erratic electrical signals and where tissue should be destroyed. Because each ablation reconfigures the atrial electrical activity and can create new arrhythmias, the researchers performed virtual ablations until no new arrhythmias emerged.

The researchers then took the final ‘map’ of tissue target areas and imported it in the clinical system for catheter navigation. Physicians then steered the catheter towards not only the tissue that currently causes errant electrical firing, but also towards the tissue that will cause misfiring in the future, as predicted by the simulations. The entire process, from obtaining an MRI to displaying the final map in the operating room, took less than a week. In the future, Trayanova and the team hope the entire process can be shortened to a day.

While this was a proof-of-concept study meant to demonstrate feasibility and not a clinical trial meant to measure patient outcomes, atrial fibrillation did not recur in any of the patients over the more than 300-day observation period. Out of the 10 patients, only one returned for another ablation, and it was for a simpler atrial arrhythmia.

“I’m very optimistic that this personalized simulation-driven approach will prove to be the missing link needed to markedly improve catheter ablation outcomes in patients with more advanced forms of atrial fibrillation. This new approach may transform current approach to catheter ablation of atrial fibrillation,” added Hugh Calkins, a professor of medicine at Johns Hopkins Medicine and an author on the study.

Watch the VIDEO: Current State of Atrial Fibrillation Ablation Technologies

This study and its success is just one project out of the Johns Hopkins University Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), a center that aims to bring cardiovascular engineering approaches to the clinic, co-directed by Trayanova and Calkins.

“This success is an exciting example of how engineering technology can be used in the clinic to help make treatment more accurate and spare patients from multiple, costly and sometimes risky procedures,” added Trayanova.

For more information:



1. Boyle P.M., Zghaib T., Zahid S., et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nature Biomedical Engineering, published online Aug. 19, 2019.

Related Content

The SERF VT EFS is a groundbreaking, single-arm observational study designed to evaluate the safety and effectiveness of the Thermedical Durablate catheter to treat VT. #HRS20 #HRS2020 #heartrhythm2020
News | Ablation Systems | May 08, 2020
May 8, 2020 – Results from a first-in-human early feasibility study (EFS) using a saline enhanced radiofrequency (SER
The Affera Inc. pulsed field (PF) energy radiofrequency ablation system. First-in-human trial shows new point-by-point approach provides increased flexibility and efficiency for physicians treating arrhythmia patients. #HRS #HRS2020 #HRS20 #heartrhythm20

The Affera Inc. pulsed field (PF) energy radiofrequency ablation system.

Feature | Ablation Systems | May 08, 2020
May 8, 2020 — A new clinical trial effectively uses pulsed field (PF) energy to treat patients with persistent or par
Noninvasive Radioablation Offers Long-term Benefits to High-risk Heart Arrhythmia Patients
News | Ablation Systems | September 17, 2019
September 17, 2019 — Treating high-risk heart patients with a single, high dose of radiation therapy can dramatically
Biosense Webster Announces Initial Results From First-in-Human QDOT-FAST Study
News | Ablation Systems | May 16, 2019
Johnson & Johnson Medical Devices Companies announced that Biosense Webster, Inc.’s QDot Micro catheter...
CardioFocus Announces Results From HeartLight X3 Ablation System Pivotal Study
News | Ablation Systems | May 16, 2019
CardioFocus Inc. announced the presentation of results from its pivotal confirmatory study evaluating the HeartLight X3...
New Global Consensus Statement Addresses Catheter Ablation of Ventricular Arrhythmias
News | Ablation Systems | May 14, 2019
The Heart Rhythm Society (HRS) in partnership with three other professional societies issued an international consensus...
Netherlands Hospital to Install State-of-the-Art MRI Ablation Center
News | Ablation Systems | May 13, 2019
Imricor announced the signing of a commercial agreement with the Haga Hospital in The Hague, Netherlands to outfit a...
A CyberHeart cardiac ablation radiotherapy treatment plan showing where the radiation beam will ablate for a noninvasive pulmonary vein isolation procedure. Varian acquires, buys, purchases Cyberheart.

A CyberHeart cardiac ablation radiotherapy treatment plan showing where the radiation beams will ablate for a noninvasive pulmonary vein isolation procedure to treat an arrhythmia.

Feature | Ablation Systems | May 10, 2019 | Dave Fornell, Editor
May 10, 2019 — Radiation oncology vendor Varian announced it acquired the start-up company CyberHeart, which has deve