News | Cardiovascular Clinical Studies | July 15, 2022

Molecular Heart Mapping and Cripsr Technology Create New Possibilities for Health Science

MMRI Scientist Dr. Nathan Tucker co-authors groundbreaking study with team from The Broad Institute of MIT and Harvard, Bayer AG
 

MMRI Scientist Dr. Nathan Tucker co-authors groundbreaking study with team from The Broad Institute of MIT and Harvard, Bayer AG

Image courtesy of MMRI


July 15, 2022 — Imagine, if scientists had a map of the heart, so granular in its accuracy that it even profiled details of the heart at the cellular level. What if we could zoom in even further, via single nucleus profiling, to peer inside the heart with a molecular view? Imagine the incredible possibilities of such a detailed map: With this knowledge, doctors will be better able to diagnose and treat diseases of the heart and cardiovascular system.    

This is precisely what a team of 19 scientists are determined to learn, in a new peer-reviewed study published in the science journal, Nature. The study, titled, “Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy,” identified molecular alterations in failing hearts at single-cell resolution, by performing single-nucleus RNA sequencing of nearly 600,000 nuclei. This is truly a story of how a “small view” can have “big possibilities.”   

The team was led by Patrick T. Ellinor, MD, PhD an Institute Member at the Broad Institute of MIT and Harvard and a cardiologist in the Demoulas Center for Cardiac Arrhythmias at the Massachusetts General Hospital Heart Center. Dr. Ellinor’s team included scientists from the Precision Cardiology Lab (PCL) of the Broad Institute of MIT and Harvard and Bayer, AG and MMRI.    

Dr. Nathan Tucker of Masonic Medical Research Institute was a driving force behind the initiation of the study when he was at Broad, and he continued to contribute to the study from his lab in Utica, New York. “We often think of hearts solely as muscles, but they are actually a complex mixture of cells that need to work together in order to perform its function as a pump,” said Dr. Tucker, regarding the new study. “In the past, we have not been able to look at these other critical components, but through revolutionary technology such as we use here, our ability to accurately examine these other cells is unlocked. In this study, using this technology and a series of human tissue samples, we identified novel state transitions in end stage heart failure at single cell resolution. It is our hope to use these new targets as the basis for therapeutic development in the future.”  

The ground-breaking effort builds upon Dr. Tucker’s already extensive work on heart mapping. In 2020, Dr. Tucker led a team to create a cell map of the human heart, the most comprehensive to date, stating, “Understanding of human cardiac biology at this resolution was not possible just a few years ago."  

For more information: www.MMRI.edu 


Related Content

News | Cardiovascular Clinical Studies

June 11, 2025 — Bayer and the Broad Institute have have extended their research collaboration of 10 years by an ...

Home June 11, 2025
Home
News | Cardiovascular Clinical Studies

May 27, 2025 — Despite scientific advances in cardiovascular care, people in living in rural areas and other communities ...

Home May 27, 2025
Home
News | Cardiovascular Clinical Studies

May 20, 2025 — Shockwave Medical, Inc., part of Johnson & Johnson MedTechhas announced the 30-day primary endpoint ...

Home May 21, 2025
Home
News | Cardiovascular Clinical Studies

Jan. 13, — A new cohort study among 103,642 adults found that current use of cigars was associated with increased risk ...

Home January 14, 2025
Home
News | Cardiovascular Clinical Studies

Nov. 22, 2024 — BridgeBio Pharma, Inc. recently announced that the U.S. Food and Drug Administration (FDA) approved ...

Home November 25, 2024
Home
News | Cardiovascular Clinical Studies

Nov. 18, 2024 — Silence Therapeutics presented end-of-treatment data from its Phase 2 ALPACAR-360 study of zerlasiran, a ...

Home November 18, 2024
Home
News | Cardiovascular Clinical Studies

Aug. 15, 2024 — According to a new study being presented at ACC Asia 2024 in Delhi, India, drinking over 400 mg of ...

Home August 14, 2024
Home
Videos | Cardiovascular Clinical Studies

As part of DAIC's continuing Thought Leadership Series, this month Editorial Director Melinda Taschetta-Millane sits ...

Home July 30, 2024
Home
News | Cardiovascular Clinical Studies

July 25, 2024 — BioCardia, Inc., a global leader in cellular and cell-derived therapeutics for the treatment of ...

Home July 25, 2024
Home
News | Cardiovascular Clinical Studies

July 18, 2024 — Elucid, a pioneering AI medical technology company providing physicians with imaging analysis software ...

Home July 18, 2024
Home
Subscribe Now