News | Population Health | January 04, 2017

Smartphone Apps May Help Study Cardiovascular Health, Behaviors

High participation rates help build large data set quickly, but research team reports limitations remain

smartphone apps, cardiovascular health, Stanford University study, patient self-reporting, population health

January 4, 2017 — In a study published online by JAMA Cardiology, researchers from Stanford University assessed the feasibility of measuring physical activity, fitness and sleep from smartphones. The goal was to gain insight into activity patterns associated with life satisfaction and self-reported disease.1

Studies have established the importance of physical activity, fitness, sleep and diet for cardiovascular health, yet these studies were completed with time-consuming, in-person measurements with substantial reliance on participant recall. Mobile technology, in particular advances in smartphone sensors, offers a new approach to the study of cardiovascular health and fitness. Direct measurement of activity through always-on, low-power motion chips provides a promising alternative to questionnaire-based approaches.

In 2015, Apple Inc. introduced an open-source framework to facilitate clinical research and standardization of data collection. One of the launch smartphone apps for the framework, MyHeart Counts, is a cardiovascular health study administered entirely via smartphone, incorporating direct sensor-based measurements of physical activity and fitness, as well as questionnaire assessment of sleep, lifestyle factors, risk perception and overall well-being.

From the launch to the time of the data freeze for this study (March to October 2015), the number of individuals (self-selected) who consented to participate was 48,968, representing all 50 states and the District of Columbia. Their median age was 36 years, and 82 percent were male. In total, 40,017 (82 percent of those who consented) uploaded data. Among those who consented, 42 percent completed four of the seven days of motion data collection, and 9 percent completed all seven days. Among those who consented, 82 percent filled out some portion of the questionnaires, and 10 percent completed the six-minute walk test, made available only at the end of seven days.

"Our study found five main results. First, we demonstrate the feasibility of consenting and engaging a large population across the United States using only smartphones. Second, we show that large-scale data can be gathered in real time from mobile devices, stored securely, transferred, deidentified and shared securely, including with participants. Third, we find that a data set for the six-minute walk test larger than any previously collected could be generated in weeks. Fourth, we report that state transition patterns of activity, not just absolute activity, relate to the reported presence of disease. Fifth, we conclude that there is a poor association between perceived and recorded physical activity, as well as perceived and formally estimated risk," the authors wrote.

"Most important, we also present the major challenges and limitations of mobile health research, including the skewed age and sex of participants, plus the rapid drop-off in engagement over time, with the resulting loss of data collection for several measures. To realize the promise of this novel approach to population health research, participant engagement needs to be optimized to maximize full participation of those who have expressed at least enough interest to download the app and consent to join the study."

"Large-scale, real-world assessment of physical activity, fitness and sleep using mobile devices may be a useful addition to future population health studies," the researchers concluded.

Read the article "How Smartphones and Apps May Change the Face of Healthcare."

For more information: www.jamanetwork.com/journals/jamacardiology

References

1. McConnell, M.V., Shcherbina, A., Pavlovic, A., et al. "Feasibility of Obtaining Measures of Lifestyle From a Smartphone App: The MyHeart Counts Cardiovascular Health Study," JAMA Cardiology. Published online Dec. 14, 2016. doi:10.1001/jamacardio.2016.4395

Related Content

Clinical trial quality data can be derived from national cardiovascular registries, which may change how trials are performed in the future.

Clinical trial quality data can be derived from national cardiovascular registries, which may change how trials are performed in the future. Getty Images

News | Cardiovascular Clinical Studies | June 24, 2021
June 24, 2021 — Data captured in American College of Cardiology (ACC)...
Heavily calcified coronary arteries seen on a CT scan of the heart. Research at the New York Institute of Technology will create blood flow modeling to show the impact of calcium in arteries as part of a project to develop treatments to remove calcium.

Heavily calcified coronary arteries seen on a CT scan of the heart. Research at the New York Institute of Technology will create blood flow modeling to show the impact of calcium in arteries as part of a project to develop treatments to remove calcium. 

News | Cardiovascular Clinical Studies | January 27, 2021
January 27, 2021 — A New York Institute of Technology research te
Hershey's Chocolate display with samples and coco pods at the American College of Cardiology (ACC) 2012 annual meeting. The company was making the case that chocolate can be good for your heart, which is now supported by several studies. Photo by Dave Fornell

Hershey's Chocolate display with samples and coco pods at the American College of Cardiology (ACC) 2012 annual meeting. The company was making the case that chocolate can be good for your heart, which is now supported by several studies. Photo by Dave Fornell

News | Cardiovascular Clinical Studies | July 22, 2020
July 22, 2020 — Eating chocolate at least once a week is linked with a reduced risk of heart disease, according to re
The first 3-D images have been created of an RNA molecule known as "Braveheart" for its role in transforming stem cells into heart cells. Credit: Image courtesy Los Alamos National Laboratory

The first 3-D images have been created of an RNA molecule known as "Braveheart" for its role in transforming stem cells into heart cells. Credit: Image courtesy Los Alamos National Laboratory

News | Cardiovascular Clinical Studies | January 20, 2020
January 20, 2020 — Scientists at Los Alamos and international partners have created the first 3-D images of a special
Top Cardiology New in 2019 From the European Society of Cardioloigy (ESC)
News | Cardiovascular Clinical Studies | December 23, 2019
Environmental and lifestyle issues were popular this year, with pick up from both...
News | Cardiovascular Clinical Studies | November 26, 2019
November 26, 2019 — The University of Connecticut (UConn) Department of Kinesiology and Hartford Healthcare have sele
FDA Issues Final Guidance on Live Case Presentations During IDE Clinical Trials
News | Cardiovascular Clinical Studies | July 10, 2019
The U.S. Food and Drug Administration (FDA) issued the final guidance “Live Case Presentations During Investigational...
Veradigm Partners With American College of Cardiology on Next-generation Research Registries
News | Cardiovascular Clinical Studies | July 03, 2019
The American College of Cardiology (ACC) has partnered with Veradigm, an Allscripts business unit, to power the next...
New FDA Proposed Rule Alters Informed Consent for Clinical Studies
News | Cardiovascular Clinical Studies | November 19, 2018
The U.S. Food and Drug Administration (FDA) is proposing to add an exception to informed consent requirements for...