News | June 08, 2008

Stem Cell Vascular Bypass Graft Advances with Shear Stress Technique

June 8, 2008 - A new study about how shear stress improves adult stem cell attachment to vascular surfaces moves researchers closer to the development of a unique tissue-engineered stem cell vascular bypass graft, reported a study presented during the Vascular Annual Meeting, June 5-8, in San Diego, CA.

At Thomas Jefferson University in Philadelphia, a team of researchers lead by vascular surgeon Paul J. DiMuzio, M.D., is developing a novel vascular bypass graft using adult stem cells derived from a patient's adipose tissue. According to Dr. DiMuzio, "The advantage of using these stem cells is that they are easy to obtain in abundance from patients in which they are intended for use; however, it has been difficult to attach the stem cells to the surface of natural vascular tissue grafts."

Work performed by Eric S. Hager, M.D., directly addressed the problem of stem cell attachment. "After we change (differentiate) the stem cells into those resembling the lining of blood vessels (endothelial cells), we seed them onto the grafts and slowly introduce shear stress to improve their attachment," said Dr. Hager. "The current study investigates exactly how shear stress alters the way the stem cells adhere to vascular surfaces."

At the 62nd Annual Meeting of the Society for Vascular Surgery, Dr. Hager and colleagues from Jefferson reported their work examining the presence and function of molecules important for cell attachment (called integrins) on the surface of the stem cells. The stem cells express these important molecules, but at lower levels than found on the endothelial cells they are attempting to emulate, possibly explaining the initial difficulties in attachment. Others have observed that endothelial cells increase integrin expression when stimulated by shear force, enabling these cells to remain attached to the inside of blood vessels.

In designing the current study, Dr. Hager hypothesized that "Shear stress improves stem cell attachment to vascular basement membrane components via upregulation of integrin expression, similar to endothelial cells." According to Dr. DiMuzio, "Firm attachment of the stem cells to the vascular graft would allow for the formation of a confluent monolayer of cells in the hopes of improving graft function."

During the study, the researchers exposed human adipose-derive stem cells (ASC) differentiated towards endothelial-like cells to physiological levels of shear stress. Subsequently, integrins expression was measured along with cell attachment to culture plates pre-coated with various vascular basement membrane components (collagen I, fibronectin, gelatin).

They observed that the human ASC expressed integrins, but at reduced levels compared to endothelial controls. Application of shear stress significantly upregulated _5_1 integrin expression, but not that of _v _3 . Demonstrating that this translates to a functional change, shear stress significantly improved ASC attachment to pre-coated plates, particularly those with collagen I and fibronectin, but not uncoated control. Finally, blockade of the _5_1 integrin receptor significantly eliminated attachment. According to Dr. Hager, "these data suggest that shear stress may be useful to improve the retention of stem cells to tissue engineered vascular grafts. Future experiments will evaluate how well the stem cell grafts function as a bypass for occluded arteries."

Grants awarded to Dr. DiMuzio from the National Institutes of Health, American Vascular Association and the American Heart Association funded this research.

For more information: www.VascularWeb.org

Related Content

New Jersey Researcher Exploring New Stem Cell Therapies for Heart Attacks
News | Stem Cell Therapies| August 04, 2017
In petri dishes in her campus laboratory at New Jersey Institute of Technology, Alice Lee is developing colonies of...
SanBio Receives $20 Million Grant for Stroke Clinical Trial
News | Stroke| July 12, 2017
July 12, 2017 — SanBio Inc.

An example of porcine cartdiac stem cells. Photo from the University of Miami Miller School of Medicine.

 

News | Stem Cell Therapies| June 12, 2017
June 12, 2017 — Heart muscle is one of the least renewable tissues in the body, which is one of the reasons that hear
Stem Cell Therapy Holds Promise for Treating Most Severe Cases of Angina
News | Stem Cell Therapies| May 12, 2017
An analysis of data from the entire development program consisting of three trials assessing the feasibility of using a...
3-D Printed Patch Can Help Mend a ‘Broken’ Heart

This photo shows the 3D-bioprinted cell patch in comparison to a mouse heart. When the patch was placed on a live mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Image courtesy of Patrick O’Leary, University of Minnesota.

News | Stem Cell Therapies| April 18, 2017
April 18, 2017 — A team of biomedical engineering researchers, led by the University of Minnesota, has created a revo
Texas Heart Institute, ischemic heart failure, adult stem cell therapy, CONCERT-HF clinical trial
News | Stem Cell Therapies| February 03, 2017
Physicians and researchers at Texas Heart Institute are recruiting patients who suffer from heart failure to...
ischemic heart failure, stem cell therapy, MSCs, CSCs, Minneapolis Heart Institute Foundation, MHIF study
News | Heart Failure| January 10, 2017
Ischemic heart failure from previous heart attacks and coronary artery disease is the leading cause of death in the...
News | Stem Cell Therapies| January 09, 2017
BioCardia Inc. announced in December the issuance of United States Patent No. 9,517,199 relating to a method of...
News | Stem Cell Therapies| January 03, 2017
January 3, 2017 — BioCardia Inc. announced in December the initiation of the CardiAMP Heart Failure pivotal trial, a
Overlay Init