News | Stem Cell Therapies | February 01, 2019

Heart Muscle Cells Created From Stem Cells Beat in Sync

New study shows how newly created cardiac muscle cells can be made to pump together

Heart Muscle Cells Created From Stem Cells Beat in Sync

February 1, 2019 — A team of Rutgers scientists have taken an important step toward the goal of making diseased hearts heal themselves – a new model that would reduce the need for bypass surgery, heart transplants or artificial pumping devices.

The study, recently published in Frontiers in Cell and Developmental Biology,1 involved removing connective tissue cells from a human heart, reverse-engineering them into heart stem cells, then re-engineering them into heart muscle cells.

The Rutgers team’s true breakthrough, however, is that the newly created cardiac muscle cells clumped together into a single unit that visibly pumps under the microscope.

Senior author Leonard Y. Lee, chair of the Department of Surgery at Rutgers Robert Wood Johnson Medical School, said cardiac cells made in this way do not normally come together and beat as one. His team succeeded in making this happen by over-expressing, a protein in the cells called CREG.

According to Lee, fibroblasts, a cell in connective tissue, were isolated from the heart tissue and reverse-engineered – or transformed – into stem cells.  This was done so that when the CREG protein was over-expressed the stem cells would differentiate into cardiac cells.

Heart failure has reached epidemic proportions. Right now, the only option to treat it is surgery, transplant or connecting the patient with a blood-pumping machine,” Lee said. “But transplantable hearts are in short supply and mechanical devices limit the patient’s quality of life. So, we are working for ways to help hearts heal themselves.”

Though still far off, Lee’s ultimate goal is to be able to remove small amounts of a patient’s native heart tissue, use CREG to convert the tissue into cardiac muscles that will work together cohesively, and re-introduce them into the patient’s heart allowing it to heal itself.

For more information: www.frontiersin.org/journals/cell-and-developmental-biology

Reference

1. Ghobrial G., Araujo L., Jinwala F., et al. The Structure and Biological Function of CREG. Frontiers in Cell and Developmental Biology, Oct. 26, 2018. https://doi.org/10.3389/fcell.2018.00136


Related Content

News | Heart Failure

February 22, 2024 — Wake Forest University School of Medicine, the academic core of Advocate Health, is expanding ...

Home February 22, 2024
Home
News | Heart Failure

February 15, 2024 — Canary Medical, a medical data company focused on the development and commercialization of its ...

Home February 15, 2024
Home
News | Heart Failure

February 12, 2023 — A team at Allina Health Minneapolis Heart Institute at Abbott Northwestern Hospital has successfully ...

Home February 12, 2024
Home
News | Heart Failure

January 30, 2024 — Researchers from the Johns Hopkins Bloomberg School of Public Health have developed a single ...

Home January 30, 2024
Home
News | Heart Failure

January 23, 2024 — Sequana Medical NV, a pioneer in the treatment of fluid overload in liver disease, heart failure and ...

Home January 23, 2024
Home
News | Heart Failure

January 16, 2024 — Cardiac Dimensions, a leader in the development of innovative and minimally invasive treatment ...

Home January 16, 2024
Home
News | Heart Failure

November 30, 2023 — BioCardia, Inc., a developer of cellular and cell-derived therapeutics for the treatment of ...

Home November 30, 2023
Home
News | Heart Failure

November 30, 2023 — Sequana Medical NV, a pioneer in the treatment of fluid overload in liver disease, heart failure and ...

Home November 30, 2023
Home
News | Heart Failure

November 16, 2023 — Mount Sinai’s Cardiovascular Research Institute is sending bioengineered human heart muscle cells ...

Home November 16, 2023
Home
News | Heart Failure

November 16, 2023 — A smartphone app using artificial intelligence technology to detect changes in the voice of a person ...

Home November 16, 2023
Home
Subscribe Now