Videos | October 11, 2018

VIDEO: Boston Scientific's Recent Cardiology Advances and Technology Acquisitions

Professor Ian Meredith, MBBS, Ph.D., global chief medical officer and executive vice president, Boston Scientific, explains key trial data presented at the 2018 Transcatheter Cardiovascular Therapeutics (TCT) conference. He also explained the company's recent purchase of numerous start-up companies to expand in areas of structural heart, venous interventions, electrophysiology and oncology. 

Hear Meredith's insights in the VIDEO: Future Research and Development Efforts in Cardiovascular Medicine

 

Recent Videos View all 492 items

Robotic Systems | January 20, 2020

This video shows the first robotic percutaneous coronary interventions (PCI) performed in Germany with the Robocath R-One robotic catheter guidance system. The first procedures were performed by Professor Michael Haude, director of Medical Clinic I at Rheinland Klinikum Neuss Lukaskrankenhaus, and his team. read more in the article First Robotic Coronary Angioplasties Performed With Robocath System in Germany.

 

Related Robocath Content:

Robocath Successfully Carries Out First Robotic Coronary Angioplasties in Humans

Robocath Receives $1.5 Million in Capital for Advancement of R-One Robotic System 

 

RSNA | January 13, 2020

DAIC/ITN Editor Dave Fornell takes a tour of some of the most innovative new medical imaging technologies displayed on the expo floor at the Radiological Society of North America (RSNA) 2019 meeting. 

Technology examples include a robotic arm to perform remote ultrasound exams, integration of artificial intelligence (AI) to speed or automate radiology workflow, holographic medical imaging display screens, a new glassless digital radiography (DR) X-ray detector, augmented reality for transesophageal echo (TEE) training, moving DR X-ray images, 3-D printed surgical implants created from a patient's CT imaging, DR X-ray tomosynthesis datasets, radiation dose management and analytics software, and new computed tomography (CT) technologies.

 

Find more videos and news from RSNA 2019

 

Wearables | January 09, 2020

The Consumer Electronic Show (CES) is the world's gathering place for consumer technologies, with more than 175,000 attendees and more than 4,400 exhibiting companies. New healthcare technologies are among the top trends at CES. This video offers a quick look at the trends specific to healthcare technology.

Artificial intelligence (AI) is one of the hottest technology trends across all product across the CES floor this year. There is also discussion by key note speakers that the internet-of-things (IOT) concept introduced at CES nearly a decade ago is now morphing into a new meaning for the interconnectivity-of-things. This can be seen in healthcare products shown here and across all types of consumer and business products. 

The device technology at CES include many examples of how integrated wearables can digitally enable healthcare. The future of healthcare will include system where consumers are continuously monitored with sensors, software and services that can pinpoint digital biomarkers — earlier warning signs that predict health events. This is the prediction of Leslie Saxon, M.D., executive director of the University of Southern California (USC) Center for Body Computing (CBC), is speaking as a panelist about digital health trends and challenges in the session “Proving the Impact of Transformative Technology.” 

Saxon is a board-certified cardiologist and digital health expert who understands how developing technologies can more accurately assess wellness and human performance among elite athletes, military personnel and patients. She explained this digital healthcare model of the future is a vast contrast to the current point-of-care model.

 

 

Cath Lab | January 09, 2020

Haval Chweich, M.D., medical director of the cardiac critical care unit (CCU) at Tufts Medical Center, and assistant professor at Tufts University School of Medicine, explains the role of intensivists on the cardiac care team. 

Chweich is an intensivist specialized in pulmonary and critical care. He interfaces with Tuft's cardiac surgeons and interventional cardiologists to care for patients as they transition after procedures into the CCU. He also plays a key role as part of the team caring for cardiogenic shock patients. 

Find VIDEOS and articles on Tufts cardiology program

Sponsored Videos View all 41 items

Information Technology | April 17, 2019

With Intellispace Enterprise Edition as the foundation, Philips Healthcare is connecting facilities and service areas within enterprises, while developing standards-based interoperability that preserves customers' investments and best of breed systems. 

Hemodynamic Support Devices | March 06, 2019

Perwaiz Meraj, M.D., FACC, FSCAI, director of interventional cardiology, assistant professor, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System discusses the importance of hemodynamic support to safely perform a percutaneous coronary intervention (PCI) with prior coronary artery bypass graft (CABG) surgery and comorbidities. Learn more at ProtectedPCI.com/DAIC.

In this video, Meraj discuss a complex coronary intervention of a 77-year-old woman with stage 4 CKD, prior CABG, hypertension, hyperlipidemia, diabetes, who presented with angina and NSTEMI with an ejection fraction of 40 percent. The team at Northwell consulted with cardiac surgeons and the heart team, and determined that this patient was too high risk for another bypass surgery. Read more on this case.

 

Related Impella Video Content:

VIDEO: Analysis of Outcomes for 15,259 U.S. Patients with AMICS Supported with the Impella Device — Interview with William O'Neill, M.D.

VIDEO: The Door-to-Unloading (DTU) STEMI Safety and Feasibility Trial — Interview with Navin Kapur, M.D.

VIDEO: Cardiogenic Shock Case with Impella CP Support — Case study with Michael Amponsah, M.D.,

 

 

Heart Failure | February 13, 2019

William O'Neill, M.D., highlights best practice protocols based on Impella Quality database and real-world evidence showing improved outcomes in cardiogenic shock. Learn more at ProtectedPCI.com/DAIC

 

Related Impella Video Content:

VIDEO: Complex PCI Involving Prior CABG and Comorbidities — Interview with Perwaiz Meraj, M.D.

VIDEO: The Door-to-Unloading (DTU) STEMI Safety and Feasibility Trial — Interview with Navin Kapur, M.D.

VIDEO: Cardiogenic Shock Case with Impella CP Support — Case study with Michael Amponsah, M.D.,

 

January 10, 2019

Mark Anderson, M.D., FACS, vice chair of cardiac surgery services and cardiothoracic surgeon at Hackensack University Medical Group, outlines a multi-disciplinary heart team approach in treament decision-making for patients in cardiogenic shock. Learn more at ProtectedPCI.com/DAIC.

Anderson discusses improving outcomes for patients in cardiogenic shock through the early use of mechanical circulatory support and the development of a shock protocol with the heart team. He outlines Hackensack University Medical Center’s multi-disciplinary, heart team approach in treatment decision-making for patients in cardiogenic shock. The team includes cardiac surgeons, interventional cardiologists, heart failure specialists and intensivists. 

 

 

Conference Coverage View all 384 items

RSNA | January 13, 2020

DAIC/ITN Editor Dave Fornell takes a tour of some of the most innovative new medical imaging technologies displayed on the expo floor at the Radiological Society of North America (RSNA) 2019 meeting. 

Technology examples include a robotic arm to perform remote ultrasound exams, integration of artificial intelligence (AI) to speed or automate radiology workflow, holographic medical imaging display screens, a new glassless digital radiography (DR) X-ray detector, augmented reality for transesophageal echo (TEE) training, moving DR X-ray images, 3-D printed surgical implants created from a patient's CT imaging, DR X-ray tomosynthesis datasets, radiation dose management and analytics software, and new computed tomography (CT) technologies.

 

Find more videos and news from RSNA 2019

 

Magnetic Resonance Imaging (MRI) | January 06, 2020

Karen Ordovas, M.D., MAS, professor of radiology and cardiology at the University of California San Francisco (UCFS) School of Medicine and a Society of Cardiac Magnetic Resonance (SCMR) board member, explains how cardiac MRI can help in women's heart disease and to better define complex congenital heart anatomy. She spoke at the 2019 Radiological Society of North America (RSNA) meeting. 

She specializes in cardiac and pulmonary imaging, and has particular expertise in using CT and MRI techniques in cardiovascular imaging and the differences of presentation in imaging between male and female cardiac patients. Ordovas is helping advance education around heart disease in women and bring great awareness of quality tools to diagnose heart disease and how heart MRI can help. She also is heavily involved in the use of heart MRIs for pregnant women, since there is no radiation,  and patients with congenital heart disease where detailed imaging of the complex anatomy is required.

The use of cardiac MRI in congenital heart disease is common in serial imaging of patients with Tetralogy of Fallot (TOF), one of the most common congenital heart diseases for which patients are referred for post-operative magnetic resonance (MR) imaging evaluation. In the past few decades, surgery has proved successful, but most patients require repeat imaging throughout their lives and MRI can offer more detailed soft tissue imaging without the use of radiation. 

 

Related Cardiac MRI Content:

VIDEO: Advances in Cardiac MRI Technology — Interview with James Carr, M.D.

Cardiac MRI Delivers Accurate Diagnosis for Frontline Chest Pain Evaluation

VIDEO: Dedicated Cardiac MRI Use at the Baylor Scott White Heart Hospital

Advantages and New Applications of Cardiac MRI

Will Cardiac MRI Expand?

 

Magnetic Resonance Imaging (MRI) | December 20, 2019

James Carr, M.D., chair of the Department of Radiology, Northwestern University, and incoming 2020 President of the Society of Cardiac Magnetic Resonance (SCMR), explains why MRI is an ideal cardiac imaging modality, at the 2019 Radiological Society of North America (RSNA) meeting.

Heart MRI offers advantages over computed tomography (CT) and echocardiography because of its excellent soft tissue delineation and its ability to offer information beyond anatomical imaging, such as perfusion, morphology and metabolism. MRI can be technically challenging and the exams requiring a long time, but recent advances have helped cur cardiac imaging times down significantly. Automation and artificial intelligence (AI) also is making post-processing and quantification mush faster, brining it closer to the time it takes to scan and post-process CT imaging.

Northwestern is was one of the early adopters of cardiovascular MRI. Carr said heart MRI was not common in regular clinical use until the past decade at some luminary centers. In 2005, Carr was given the opportunity to develop a clinical cardiac MRI program at Northwestern.
 
He said MRI scanners have improved, and now much faster than a decade ago. They are also more optimized for cardiac imaging. While heart MRI is well known in large hospital centers, Carr said it still needs to develop and expand to community hospitals and rural hospitals outside major population centers. 

Artificial intelligence is playing a significant role in cardiac MRI automation of speeding workflow and quantification. Carr said these technologies will become mainstream in the next few years. AI also will play an increasing role in risk prediction based on new image analysis algorithms in development.

For more information on cardiac MRI, visit SCMR's website www.heartmri.org.

 

Related Cardiac MRI Content:

Cardiac MRI Delivers Accurate Diagnosis for Frontline Chest Pain Evaluation

VIDEO: Dedicated Cardiac MRI Use at the Baylor Scott White Heart Hospital

Advantages and New Applications of Cardiac MRI

Will Cardiac MRI Expand?

VIDEO: Use of Cardiac MRI in Congenital and Women's Heart Disease — Karen Ordovas, M.D., 
 

 

Radiation Dose Management | December 19, 2019

 

Mahadevappa Mahesh, Ph.D., chief of medical physicist and professor of radiology and medical physics, Johns Hopkins University, Baltimore, treasurer of the American Association of Physicists in Medicine (AAPM),a board member of the American College of Radiology (ACR), presented a late-breaking study on how medical imaging radiation dose has started to drop over the past decade. He is the co-chair of the National Council on Radiation Protection and Measures Report (NCRP), and presented the most recent NCRP data analysis at the 2019 Radiological Society of North America (RSNA) meeting.

The new NCRP 184 report covers the period between 2006 and 2016, the period of the most current CMS data. It shows a decrease of about 20 percent in the radiation dose the U.S. population receives from medical imaging, compared to the NCRP 160 that covered the period of up to 2006.

Key findings of the study include:

   • CT dose dropped about 6 percent, despite a 20 percent increase CT scans since 2006;

   • Drop of more than 50 percent for nuclear imaging scans, mainly due to fewer procedures begin performed;

   • A 15-20 percent decrease across X-ray imaging modalities.

Mahesh says this shows the impact of using "as low as reasonably achievable" (ALARA) principals, new dose guidelines outlined jointly by numerous medical societies, and dose reduction initiatives like Image Wisely, Image Gently, and the American College of radiology (ACR) Dose Index Registry.

He said there was growing concern a decade ago when the last council report was published, which show a steep increase in radiation dose. This was mainly due to a rapid increase in the use of computed tomography (CT) and other types of X-ray based and nuclear radiotracer medical imaging. This prompted the ACR top create the Image Wisely program and push for the use of more thoughtful imaging doses based on patient size, using the "as low as reasonably achievable” (ALARA) principle. While CT dose was lowered, he said the biggest decline was in nuclear imaging.

 

 

Cath Lab View all 235 items

Robotic Systems | January 20, 2020

This video shows the first robotic percutaneous coronary interventions (PCI) performed in Germany with the Robocath R-One robotic catheter guidance system. The first procedures were performed by Professor Michael Haude, director of Medical Clinic I at Rheinland Klinikum Neuss Lukaskrankenhaus, and his team. read more in the article First Robotic Coronary Angioplasties Performed With Robocath System in Germany.

 

Related Robocath Content:

Robocath Successfully Carries Out First Robotic Coronary Angioplasties in Humans

Robocath Receives $1.5 Million in Capital for Advancement of R-One Robotic System 

 

Cath Lab | January 09, 2020

Haval Chweich, M.D., medical director of the cardiac critical care unit (CCU) at Tufts Medical Center, and assistant professor at Tufts University School of Medicine, explains the role of intensivists on the cardiac care team. 

Chweich is an intensivist specialized in pulmonary and critical care. He interfaces with Tuft's cardiac surgeons and interventional cardiologists to care for patients as they transition after procedures into the CCU. He also plays a key role as part of the team caring for cardiogenic shock patients. 

Find VIDEOS and articles on Tufts cardiology program

Hemodynamic Support Devices | January 09, 2020

Richard Botto, CVT, RCSA, chief cardiovascular technologist, division of cardiology, cardiac cath lab, and Melissa Smith, RT, at Tufts Medical Center, Boston, explain the use of technology to remotely access data and waveforms on patients' temporary hemodynamic support system control consoles. 

Tufts Medical Center was one of the first hospitals to begin using the Impella Connect technology, which enables remote smartphone access to Impella consoles. This allows real time monitors or a quick check on patients using temporary hemodynamic support. The technology also is connected to a support center at Abiomed, so if a console or patient is experiencing issues out of the ordinary, techs can remote into the patient's Impella control console to take a look. Tuft's intensivists in the cardiac care unit (CCU) use the app to check on their patients' consoles without needing to walk into each room. 

Find VIDEOS and articles on Tufts cardiology program

 

Radiation Dose Management | December 19, 2019

 

Mahadevappa Mahesh, Ph.D., chief of medical physicist and professor of radiology and medical physics, Johns Hopkins University, Baltimore, treasurer of the American Association of Physicists in Medicine (AAPM),a board member of the American College of Radiology (ACR), presented a late-breaking study on how medical imaging radiation dose has started to drop over the past decade. He is the co-chair of the National Council on Radiation Protection and Measures Report (NCRP), and presented the most recent NCRP data analysis at the 2019 Radiological Society of North America (RSNA) meeting.

The new NCRP 184 report covers the period between 2006 and 2016, the period of the most current CMS data. It shows a decrease of about 20 percent in the radiation dose the U.S. population receives from medical imaging, compared to the NCRP 160 that covered the period of up to 2006.

Key findings of the study include:

   • CT dose dropped about 6 percent, despite a 20 percent increase CT scans since 2006;

   • Drop of more than 50 percent for nuclear imaging scans, mainly due to fewer procedures begin performed;

   • A 15-20 percent decrease across X-ray imaging modalities.

Mahesh says this shows the impact of using "as low as reasonably achievable" (ALARA) principals, new dose guidelines outlined jointly by numerous medical societies, and dose reduction initiatives like Image Wisely, Image Gently, and the American College of radiology (ACR) Dose Index Registry.

He said there was growing concern a decade ago when the last council report was published, which show a steep increase in radiation dose. This was mainly due to a rapid increase in the use of computed tomography (CT) and other types of X-ray based and nuclear radiotracer medical imaging. This prompted the ACR top create the Image Wisely program and push for the use of more thoughtful imaging doses based on patient size, using the "as low as reasonably achievable” (ALARA) principle. While CT dose was lowered, he said the biggest decline was in nuclear imaging.

 

 

Cardiac Imaging View all 241 items

RSNA | January 13, 2020

DAIC/ITN Editor Dave Fornell takes a tour of some of the most innovative new medical imaging technologies displayed on the expo floor at the Radiological Society of North America (RSNA) 2019 meeting. 

Technology examples include a robotic arm to perform remote ultrasound exams, integration of artificial intelligence (AI) to speed or automate radiology workflow, holographic medical imaging display screens, a new glassless digital radiography (DR) X-ray detector, augmented reality for transesophageal echo (TEE) training, moving DR X-ray images, 3-D printed surgical implants created from a patient's CT imaging, DR X-ray tomosynthesis datasets, radiation dose management and analytics software, and new computed tomography (CT) technologies.

 

Find more videos and news from RSNA 2019

 

Magnetic Resonance Imaging (MRI) | January 06, 2020

Karen Ordovas, M.D., MAS, professor of radiology and cardiology at the University of California San Francisco (UCFS) School of Medicine and a Society of Cardiac Magnetic Resonance (SCMR) board member, explains how cardiac MRI can help in women's heart disease and to better define complex congenital heart anatomy. She spoke at the 2019 Radiological Society of North America (RSNA) meeting. 

She specializes in cardiac and pulmonary imaging, and has particular expertise in using CT and MRI techniques in cardiovascular imaging and the differences of presentation in imaging between male and female cardiac patients. Ordovas is helping advance education around heart disease in women and bring great awareness of quality tools to diagnose heart disease and how heart MRI can help. She also is heavily involved in the use of heart MRIs for pregnant women, since there is no radiation,  and patients with congenital heart disease where detailed imaging of the complex anatomy is required.

The use of cardiac MRI in congenital heart disease is common in serial imaging of patients with Tetralogy of Fallot (TOF), one of the most common congenital heart diseases for which patients are referred for post-operative magnetic resonance (MR) imaging evaluation. In the past few decades, surgery has proved successful, but most patients require repeat imaging throughout their lives and MRI can offer more detailed soft tissue imaging without the use of radiation. 

 

Related Cardiac MRI Content:

VIDEO: Advances in Cardiac MRI Technology — Interview with James Carr, M.D.

Cardiac MRI Delivers Accurate Diagnosis for Frontline Chest Pain Evaluation

VIDEO: Dedicated Cardiac MRI Use at the Baylor Scott White Heart Hospital

Advantages and New Applications of Cardiac MRI

Will Cardiac MRI Expand?

 

Magnetic Resonance Imaging (MRI) | December 20, 2019

James Carr, M.D., chair of the Department of Radiology, Northwestern University, and incoming 2020 President of the Society of Cardiac Magnetic Resonance (SCMR), explains why MRI is an ideal cardiac imaging modality, at the 2019 Radiological Society of North America (RSNA) meeting.

Heart MRI offers advantages over computed tomography (CT) and echocardiography because of its excellent soft tissue delineation and its ability to offer information beyond anatomical imaging, such as perfusion, morphology and metabolism. MRI can be technically challenging and the exams requiring a long time, but recent advances have helped cur cardiac imaging times down significantly. Automation and artificial intelligence (AI) also is making post-processing and quantification mush faster, brining it closer to the time it takes to scan and post-process CT imaging.

Northwestern is was one of the early adopters of cardiovascular MRI. Carr said heart MRI was not common in regular clinical use until the past decade at some luminary centers. In 2005, Carr was given the opportunity to develop a clinical cardiac MRI program at Northwestern.
 
He said MRI scanners have improved, and now much faster than a decade ago. They are also more optimized for cardiac imaging. While heart MRI is well known in large hospital centers, Carr said it still needs to develop and expand to community hospitals and rural hospitals outside major population centers. 

Artificial intelligence is playing a significant role in cardiac MRI automation of speeding workflow and quantification. Carr said these technologies will become mainstream in the next few years. AI also will play an increasing role in risk prediction based on new image analysis algorithms in development.

For more information on cardiac MRI, visit SCMR's website www.heartmri.org.

 

Related Cardiac MRI Content:

Cardiac MRI Delivers Accurate Diagnosis for Frontline Chest Pain Evaluation

VIDEO: Dedicated Cardiac MRI Use at the Baylor Scott White Heart Hospital

Advantages and New Applications of Cardiac MRI

Will Cardiac MRI Expand?

VIDEO: Use of Cardiac MRI in Congenital and Women's Heart Disease — Karen Ordovas, M.D., 
 

 

Cardiovascular Ultrasound | December 20, 2019

This is the LVivo auto cardiac ejection fraction (EF) app that uses artificial intelligence (AI) from the vendor Dia, displayed at the Radiological Society Of North America (RSNA) 2019. The user opens the app in a couple seconds the AI defines to myocardial border and calculates EF for left ventricle (LV). It is shown here integrated into the GE Healthcare VScan point-of-care-ultrasound system (POCUS).

The company also partners with Konica-Minolta to supply auto EF for ultrasound images on its cardio PACS.

Read more about the system from an ASE 2019 stud

Cardiac Diagnostics View all 59 items

Wearables | January 09, 2020

The Consumer Electronic Show (CES) is the world's gathering place for consumer technologies, with more than 175,000 attendees and more than 4,400 exhibiting companies. New healthcare technologies are among the top trends at CES. This video offers a quick look at the trends specific to healthcare technology.

Artificial intelligence (AI) is one of the hottest technology trends across all product across the CES floor this year. There is also discussion by key note speakers that the internet-of-things (IOT) concept introduced at CES nearly a decade ago is now morphing into a new meaning for the interconnectivity-of-things. This can be seen in healthcare products shown here and across all types of consumer and business products. 

The device technology at CES include many examples of how integrated wearables can digitally enable healthcare. The future of healthcare will include system where consumers are continuously monitored with sensors, software and services that can pinpoint digital biomarkers — earlier warning signs that predict health events. This is the prediction of Leslie Saxon, M.D., executive director of the University of Southern California (USC) Center for Body Computing (CBC), is speaking as a panelist about digital health trends and challenges in the session “Proving the Impact of Transformative Technology.” 

Saxon is a board-certified cardiologist and digital health expert who understands how developing technologies can more accurately assess wellness and human performance among elite athletes, military personnel and patients. She explained this digital healthcare model of the future is a vast contrast to the current point-of-care model.

 

 

Artificial Intelligence | November 07, 2019

Piotr J. Slomka, Ph.D., FACC, research scientist in the Artificial Intelligence in Medicine Program, Department of Medicine at Cedars-Sinai, and professor of medicine in-residence of the David Geffen School of Medicine, UCLA. He explains how his team at Cedars-Sinai is working on intelligent patient risk prediction algorithms that will automatically extract information from medical imaging. He spoke on artificial intelligence (AI) development for medical imaging in sessions at the 2019 American Society of Nuclear Cardiology (ASNC) annual meeting. 

Find more articles and video on AI

 

Cardiac Diagnostics | October 29, 2019

Clyde Yancy, M.D., MSc, cardiology chief and vice dean for diversity and inclusion at Northwestern University, Feinberg School of Medicine, was a keynote speaker at the 2019 American Society of Nuclear Cardiology (ASNC) annual meeting. He said the traditional biases of seeing a patient and automatically making clinical assumptions because they are a certain race or gender are obsolete. For example, he said not all black patients have hypertension. Yancy added that genetics, especially with racial intermarriage over the past several generations, no longer predisposes patients to what is typically assumed for certain ethnic or racial backgrounds.

Yancy also said new research is showing how diet plays a major role in patient health and disease progression for things previously thought to be based on genetics. This includes the people who live in "food deserts" in urban areas where there are no sources of fresh food and vegetables, so they consume large amounts of packaged and processed foods that contain high levels of salt, phosphates and preservatives. He said these chemicals and diet may be the root cause of hypertension and diabetes in black populations in low income areas, rather than genetics as previously thought.

 

Related Content: 

VIDEO: Reducing Hypertension Among African-Americans — Interview with Kim Allan Williams, Sr., M.D.

VIDEO: Use of Plant-Based Diet to Reduce Cardiovascular Disease Risk — Interview with Kim Allan Williams, Sr., M.D.

VIDEO: New PLATINUM Diversity Data Shows Early DAPT Cessation OK in Minorities With New Generation Stent — Interview with Roxana Mehran, M.D., 

 

CT Angiography (CTA) | August 08, 2019

This is an example of an automated calcium scoring software to speed review of coronary artery calcium (CAC) scoring cardiac computed tomography (CT) scans. This advanced visualization software from Ziosoft uses artificial intelligence to segment the coronary vessels, identify valves and the aorta and then color code tag the calcium deposits and quantify the amount of calcified plaque in each vessel. It tallies the score into a table and computes an overall Agatston risk score. This risk score correlates to that patient's risk for a heart attack in the future. The software notes calcium in the heart outside the coronaries in valve leaflets and the aorta, but excludes this data. This type of automation is now offered by most advanced visualization and CT system vendors. This automation can save a large amount of post-processing time and make it easier for hospitals to offer low-cost CAC CT screening programs. 

CAC scans can be used to determine if a patient needs to go on statin therapy. An Agatston score of zero means the patient has no risk of coronary disease. 

Calcium in arteries is a marker for damage caused by vessel wall inflammation from atherosclerosis. Calcium can form from previously ruptured necrotic, lipid core plaques, also referred to as vulnerable plaques. These are the types of plaque responsible for heart attacks. When the core of these plaques rupture, the blood reacts to the exposed core similar to a wound and begins to clot, forming a thrombus in the vessel, which can block the blood flow. When the vessel heals over time it calcifies, leaving behind an easily identifiable marker on CT imaging. 

This example of software was demonstrated on the expo floor at the 2019 Society of Cardiovascular Computed Tomography (SCCT) meeting. 

 

Related CT Calcium Scorining Content:

VIDEO: The History of CT Calcium Scoring — Interview with Arthur Agatston, M.D.

VIDEO: New Cholesterol Guidelines Support CT Calcium Scoring for Risk Assessment — Interview with Matthew Budoff, M.D.

CT Calcium Scoring Becoming a Key Risk Factor Assessment

ACC and AHA Release Updated Cholesterol Guidelines for 2018

VIDEO: CT Calcium Scoring to Screen For Who Should Take Statins — Interview with Matthew Budoff, M.D.

 

 

EP Lab View all 60 items

Wearables | January 09, 2020

The Consumer Electronic Show (CES) is the world's gathering place for consumer technologies, with more than 175,000 attendees and more than 4,400 exhibiting companies. New healthcare technologies are among the top trends at CES. This video offers a quick look at the trends specific to healthcare technology.

Artificial intelligence (AI) is one of the hottest technology trends across all product across the CES floor this year. There is also discussion by key note speakers that the internet-of-things (IOT) concept introduced at CES nearly a decade ago is now morphing into a new meaning for the interconnectivity-of-things. This can be seen in healthcare products shown here and across all types of consumer and business products. 

The device technology at CES include many examples of how integrated wearables can digitally enable healthcare. The future of healthcare will include system where consumers are continuously monitored with sensors, software and services that can pinpoint digital biomarkers — earlier warning signs that predict health events. This is the prediction of Leslie Saxon, M.D., executive director of the University of Southern California (USC) Center for Body Computing (CBC), is speaking as a panelist about digital health trends and challenges in the session “Proving the Impact of Transformative Technology.” 

Saxon is a board-certified cardiologist and digital health expert who understands how developing technologies can more accurately assess wellness and human performance among elite athletes, military personnel and patients. She explained this digital healthcare model of the future is a vast contrast to the current point-of-care model.

 

 

Ablation Systems | September 26, 2019

Clifford Robinson, M.D., associate professor of radiation oncology, chief of the SBRT service, director of clinical trials, Washington University, St. Louis, Washington University School of Medicine in St. Louis, explains the longer term results of cardiac radiotherapy ablation to treat ventricular tachycardia

The results of the ENCORE-VT study were presented at ASTRO 2019.

EP Lab | July 26, 2019

Mark Ibrahim, M.D., FACC, assistant professor of medicine and radiology, associate program director, advanced cardiac imaging fellowship, University of Utah, explains what radiologists and cardiologists need to know what is needed from CT imaging prior to ablation procedures for atrial fibrillation (AF) and ventricular fibrillation (VF). He spoke at a joint session of the Heart Rhythm Society (HRS) and the Society of Cardiovascular Computed Tomography (SCCT) at the 2019 SCCT meeting. 

 

Find more SCCT news and videos

EP Lab | July 25, 2019

Pierre Qian, MBBS, cardiac electrophysiologist fellow, Brigham and Women's Hospital, explains how his facility is working with radiation oncology to use radio therapy to noninvasively ablate ventricular tachycardia (VT). He spoke on this topics during a joint electrophysiology session by the Heart Rhythm Society (HRS) and the Society of Cardiovascular Computed Tomography (SCCT) at the SCCT 2019 meeting.

Here is a link to another radiotherapy EP project Qian recently had published - A Novel Microwave Catheter Can Perform Noncontact Circumferential Endocardial Ablation in a Model of Pulmonary Vein Isolation

 

Find more SCCT news and videos

Information Technology View all 144 items

RSNA | January 13, 2020

DAIC/ITN Editor Dave Fornell takes a tour of some of the most innovative new medical imaging technologies displayed on the expo floor at the Radiological Society of North America (RSNA) 2019 meeting. 

Technology examples include a robotic arm to perform remote ultrasound exams, integration of artificial intelligence (AI) to speed or automate radiology workflow, holographic medical imaging display screens, a new glassless digital radiography (DR) X-ray detector, augmented reality for transesophageal echo (TEE) training, moving DR X-ray images, 3-D printed surgical implants created from a patient's CT imaging, DR X-ray tomosynthesis datasets, radiation dose management and analytics software, and new computed tomography (CT) technologies.

 

Find more videos and news from RSNA 2019

 

Wearables | January 09, 2020

The Consumer Electronic Show (CES) is the world's gathering place for consumer technologies, with more than 175,000 attendees and more than 4,400 exhibiting companies. New healthcare technologies are among the top trends at CES. This video offers a quick look at the trends specific to healthcare technology.

Artificial intelligence (AI) is one of the hottest technology trends across all product across the CES floor this year. There is also discussion by key note speakers that the internet-of-things (IOT) concept introduced at CES nearly a decade ago is now morphing into a new meaning for the interconnectivity-of-things. This can be seen in healthcare products shown here and across all types of consumer and business products. 

The device technology at CES include many examples of how integrated wearables can digitally enable healthcare. The future of healthcare will include system where consumers are continuously monitored with sensors, software and services that can pinpoint digital biomarkers — earlier warning signs that predict health events. This is the prediction of Leslie Saxon, M.D., executive director of the University of Southern California (USC) Center for Body Computing (CBC), is speaking as a panelist about digital health trends and challenges in the session “Proving the Impact of Transformative Technology.” 

Saxon is a board-certified cardiologist and digital health expert who understands how developing technologies can more accurately assess wellness and human performance among elite athletes, military personnel and patients. She explained this digital healthcare model of the future is a vast contrast to the current point-of-care model.

 

 

Hemodynamic Support Devices | January 09, 2020

Richard Botto, CVT, RCSA, chief cardiovascular technologist, division of cardiology, cardiac cath lab, and Melissa Smith, RT, at Tufts Medical Center, Boston, explain the use of technology to remotely access data and waveforms on patients' temporary hemodynamic support system control consoles. 

Tufts Medical Center was one of the first hospitals to begin using the Impella Connect technology, which enables remote smartphone access to Impella consoles. This allows real time monitors or a quick check on patients using temporary hemodynamic support. The technology also is connected to a support center at Abiomed, so if a console or patient is experiencing issues out of the ordinary, techs can remote into the patient's Impella control console to take a look. Tuft's intensivists in the cardiac care unit (CCU) use the app to check on their patients' consoles without needing to walk into each room. 

Find VIDEOS and articles on Tufts cardiology program

 

Cardiovascular Ultrasound | December 20, 2019

This is the LVivo auto cardiac ejection fraction (EF) app that uses artificial intelligence (AI) from the vendor Dia, displayed at the Radiological Society Of North America (RSNA) 2019. The user opens the app in a couple seconds the AI defines to myocardial border and calculates EF for left ventricle (LV). It is shown here integrated into the GE Healthcare VScan point-of-care-ultrasound system (POCUS).

The company also partners with Konica-Minolta to supply auto EF for ultrasound images on its cardio PACS.

Read more about the system from an ASE 2019 stud

Overlay Init