Videos | Pharmaceuticals | November 13, 2018

VIDEO: REDUCE-IT Trial Shows New Therapy Option for Patients With Uncontrolled Triglycerides

Deepak L. Bhatt, M.D., executive director of the interventional cardiovascular program, Brigham and Women’s Hospital Heart & Vascular Center and Harvard Medical School, explains the results of the late-breaking REDUCE-IT Trial at the 2018 American Heart Association (AHA) meeting. This is a landmark study that showed icosapent ethyl (Vascepa) can significantly reduce major adverse cardiac and stroke events in patients with continued high triglyceride levels while on statin therapy.

Read the article on the REDUCE-IT Trial

Recent Videos View all 479 items

Nuclear Imaging | November 07, 2019

Rob Beanlands, M.D., FASNC, 2019 American Society of Nuclear Cardiology (ASNC) president, shares a couple trends he sees in cardiac nuclear imaging. He is the Vered Chair and division head of cardiology and director of the National Cardiac PET Centre at the University of Ottawa Heart Institute, Canada.

He said overall trends he sees in nuclear cardiology include the use of better myocardial reserve quantification so it is clear whether revascularization would help patients. Beanlands also said there is increasing interest in positron emission tomography (PET) imaging because of its superior image quality and increasing access to PET radiotracers. New tracers on the horizon will also increase the image quality and flexibility of PET to accomodate exercise stress.

He spoke on artificial intelligence (AI) development for medical imaging in sessions at the 2019 American Society of Nuclear Cardiology (ASNC) annual meeting. 

Artificial Intelligence | November 07, 2019

Piotr J. Slomka, Ph.D., FACC, research scientist in the Artificial Intelligence in Medicine Program, Department of Medicine at Cedars-Sinai, and professor of medicine in-residence of the David Geffen School of Medicine, UCLA. He explains how his team at Cedars-Sinai is working on intelligent patient risk prediction algorithms that will automatically extract information from medical imaging. He spoke on artificial intelligence (AI) development for medical imaging in sessions at the 2019 American Society of Nuclear Cardiology (ASNC) annual meeting. 

Find more articles and video on AI

 

Nuclear Imaging | November 06, 2019

Robert C. Hendel, M.D., explains some of the new cardiac radiotracers in the pipeline that were discussed in sessions at the American Society of Nuclear Cardiology (ASNC) 2019 meeting. Hendel is a professor of medicine and radiology and the Sidney W. And Marilyn S. Lassen Chair in Cardiovascular Medicine, Tulane University. He also serves as the chief of the section of cardiology and director of the Tulane University Heart and Vascular Institute. 

He outlined three new radiotracers that may impact cardiac imaging:

   • Flurpiridaz F-18 PET perfusion agent that offers high quality images and can be used with exercise stress;

   • MIBG imaging to help better assess heart failure classes and if patients may need an ICD;

   • New F-18 agents to image cardiac amyloidosis; and

   • Nuclear agents to enable annexin imaging, allowing direct vsualization of myocardial apoptotic cells.

 

PET-CT | October 30, 2019

Rupa Sanghani, M.D., FASNC, associate professor, Rush Medical College, director of nuclear cardiology and stress laboratory, Rush University Medical Center, and associate director, Rush Heart Center for Women, explains how to create a high-volume cardiac positron emission tomography (PET) imaging program. She spoke on this topic at the 2019 meeting of the American Society Nuclear Cardiology (ASNC) and led a tour for attendees of the PET-CT system at Rush, which was located close to the conference. 

Sanghani said the advantages of PET myocardial perfusion imaging include faster exam times and allowing additional information from coronary reserve flow assessments to better understand if revascularization will help a patient's heart recover. The 16-slice CT scanner is used not only to attenuate the PET images, but to perform a CT calcium scoring exam to assess the patient's risk for future cardiovascular events. The Rubidium-82 radiotracer used for PET exams only has a 75 second half life, so it can help increase the number of exams a center is able to perform each day. At higher volume centers, PET is optimized to handle all the patients who require pharmacological stress exams. 

In the video, Sanghani  outlines what Rush did to design its room, covers basics on training, what to look for in a scanner and other considerations when creating a PET program.

Find more coverage of the ASNC

Find more news on nuclear imaging

 

 

Sponsored Videos View all 41 items

Information Technology | April 17, 2019

With Intellispace Enterprise Edition as the foundation, Philips Healthcare is connecting facilities and service areas within enterprises, while developing standards-based interoperability that preserves customers' investments and best of breed systems. 

Hemodynamic Support Devices | March 06, 2019

Perwaiz Meraj, M.D., FACC, FSCAI, director of interventional cardiology, assistant professor, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System discusses the importance of hemodynamic support to safely perform a percutaneous coronary intervention (PCI) with prior coronary artery bypass graft (CABG) surgery and comorbidities. Learn more at ProtectedPCI.com/DAIC.

In this video, Meraj discuss a complex coronary intervention of a 77-year-old woman with stage 4 CKD, prior CABG, hypertension, hyperlipidemia, diabetes, who presented with angina and NSTEMI with an ejection fraction of 40 percent. The team at Northwell consulted with cardiac surgeons and the heart team, and determined that this patient was too high risk for another bypass surgery. Read more on this case.

 

Related Impella Video Content:

VIDEO: Analysis of Outcomes for 15,259 U.S. Patients with AMICS Supported with the Impella Device — Interview with William O'Neill, M.D.

VIDEO: The Door-to-Unloading (DTU) STEMI Safety and Feasibility Trial — Interview with Navin Kapur, M.D.

VIDEO: Cardiogenic Shock Case with Impella CP Support — Case study with Michael Amponsah, M.D.,

 

 

Heart Failure | February 13, 2019

William O'Neill, M.D., highlights best practice protocols based on Impella Quality database and real-world evidence showing improved outcomes in cardiogenic shock. Learn more at ProtectedPCI.com/DAIC

 

Related Impella Video Content:

VIDEO: Complex PCI Involving Prior CABG and Comorbidities — Interview with Perwaiz Meraj, M.D.

VIDEO: The Door-to-Unloading (DTU) STEMI Safety and Feasibility Trial — Interview with Navin Kapur, M.D.

VIDEO: Cardiogenic Shock Case with Impella CP Support — Case study with Michael Amponsah, M.D.,

 

January 10, 2019

Mark Anderson, M.D., FACS, vice chair of cardiac surgery services and cardiothoracic surgeon at Hackensack University Medical Group, outlines a multi-disciplinary heart team approach in treament decision-making for patients in cardiogenic shock. Learn more at ProtectedPCI.com/DAIC.

Anderson discusses improving outcomes for patients in cardiogenic shock through the early use of mechanical circulatory support and the development of a shock protocol with the heart team. He outlines Hackensack University Medical Center’s multi-disciplinary, heart team approach in treatment decision-making for patients in cardiogenic shock. The team includes cardiac surgeons, interventional cardiologists, heart failure specialists and intensivists. 

 

 

Conference Videos View all 376 items

Nuclear Imaging | November 07, 2019

Rob Beanlands, M.D., FASNC, 2019 American Society of Nuclear Cardiology (ASNC) president, shares a couple trends he sees in cardiac nuclear imaging. He is the Vered Chair and division head of cardiology and director of the National Cardiac PET Centre at the University of Ottawa Heart Institute, Canada.

He said overall trends he sees in nuclear cardiology include the use of better myocardial reserve quantification so it is clear whether revascularization would help patients. Beanlands also said there is increasing interest in positron emission tomography (PET) imaging because of its superior image quality and increasing access to PET radiotracers. New tracers on the horizon will also increase the image quality and flexibility of PET to accomodate exercise stress.

He spoke on artificial intelligence (AI) development for medical imaging in sessions at the 2019 American Society of Nuclear Cardiology (ASNC) annual meeting. 

Artificial Intelligence | November 07, 2019

Piotr J. Slomka, Ph.D., FACC, research scientist in the Artificial Intelligence in Medicine Program, Department of Medicine at Cedars-Sinai, and professor of medicine in-residence of the David Geffen School of Medicine, UCLA. He explains how his team at Cedars-Sinai is working on intelligent patient risk prediction algorithms that will automatically extract information from medical imaging. He spoke on artificial intelligence (AI) development for medical imaging in sessions at the 2019 American Society of Nuclear Cardiology (ASNC) annual meeting. 

Find more articles and video on AI

 

Nuclear Imaging | November 06, 2019

Robert C. Hendel, M.D., explains some of the new cardiac radiotracers in the pipeline that were discussed in sessions at the American Society of Nuclear Cardiology (ASNC) 2019 meeting. Hendel is a professor of medicine and radiology and the Sidney W. And Marilyn S. Lassen Chair in Cardiovascular Medicine, Tulane University. He also serves as the chief of the section of cardiology and director of the Tulane University Heart and Vascular Institute. 

He outlined three new radiotracers that may impact cardiac imaging:

   • Flurpiridaz F-18 PET perfusion agent that offers high quality images and can be used with exercise stress;

   • MIBG imaging to help better assess heart failure classes and if patients may need an ICD;

   • New F-18 agents to image cardiac amyloidosis; and

   • Nuclear agents to enable annexin imaging, allowing direct vsualization of myocardial apoptotic cells.

 

PET-CT | October 30, 2019

Rupa Sanghani, M.D., FASNC, associate professor, Rush Medical College, director of nuclear cardiology and stress laboratory, Rush University Medical Center, and associate director, Rush Heart Center for Women, explains how to create a high-volume cardiac positron emission tomography (PET) imaging program. She spoke on this topic at the 2019 meeting of the American Society Nuclear Cardiology (ASNC) and led a tour for attendees of the PET-CT system at Rush, which was located close to the conference. 

Sanghani said the advantages of PET myocardial perfusion imaging include faster exam times and allowing additional information from coronary reserve flow assessments to better understand if revascularization will help a patient's heart recover. The 16-slice CT scanner is used not only to attenuate the PET images, but to perform a CT calcium scoring exam to assess the patient's risk for future cardiovascular events. The Rubidium-82 radiotracer used for PET exams only has a 75 second half life, so it can help increase the number of exams a center is able to perform each day. At higher volume centers, PET is optimized to handle all the patients who require pharmacological stress exams. 

In the video, Sanghani  outlines what Rush did to design its room, covers basics on training, what to look for in a scanner and other considerations when creating a PET program.

Find more coverage of the ASNC

Find more news on nuclear imaging

 

 

Cath Lab View all 229 items

Radial Access | October 22, 2019

Sunil Rao, M.D., chief of cardiology, Durham VA Health System and a professor at Duke University, and Prashant Kaul, M.D., director of the cath lab, Piedmont, Atlanta, discuss trends in radial access at the 2019 Transcatheter Cardiovascular Therapeutics (TCT) annual meeting. They discuss how radial access adoption has grown rapidly in the past few years and now makes up between 40-50 percent of percutaneous coronary intervention (PCI) procedural volume in the United States. They also discuss recent clinical trial data and the new concept of using distal radial access. 

 

Related Radial Access Content:

Transradial Access Celebrates 25 Years

VIDEO: History of Radial Artery Access — Interview with Ferdinand Kiemeneij, M.D.

VIDEO: New Frontiers in Radial Access — Interview with Mladen I. Vidovich, M.D.

Find more news and on transradial access technique and technology

 

 

Vascular Closure Devices | October 17, 2019

Ashish Pershad, M.D., chief of interventional cardiology, Banner University Medical Center, Phoenix, explains the trend of using closure devices to seal larger vascular access sites from the use of TAVR, EVAR, TMVR and hemodynamic support devices at the 2019 Transcatheter Cardiovascular Therapeutics (TCT) meeting. He was one of the moderators on a session on this topic at TCT 2019.

 

Related Large Bore Vascular Closure Device Content:

VIDEO: How to Achieve Hemostasis With Large Bore Device Access — Interview with Philippe Genereux, M.D.

First-in-Human Results Show Early Bird Device Effective in Early Detection of Internal Bleeding

Advances and Trends in Vascular Closure Devices

Manta Large-Bore Vascular Closure Device Cleared by the FDA

PerQseal Large Bore Closure Device Launches in Europe

Teleflex Acquires Essential Medical

 

Related Content With Dr. Pershad:

National Coverage Determination Will Make TAVR Available to More Patients at More Centers

VIDEO: Comparison Between Watchman vs. Amulet LAA Occluders
 

Antiplatelet and Anticoagulation Therapies | October 17, 2019

Roxana Mehran, M.D., FACC, FACP, FCCP, FESC, FAHA, FSCAI, professor of medicine and director of interventional cardiovascular research and clinical trials at the Zena and Michael A. Wiener Cardiovascular Institute at Mount Sinai School of Medicine, explains the use of short dual antiplatelet therapy (DAPT) in minorities from the PLATINUM Diversity Trial. The first trial data was released in 2017, and she presented new data from the study at the 2019 Transcatheter Cardiovascular Therapeutics (TCT) meeting. 

The study looked at use of the Promus Element Plus Post-Approval Study and the clinical impact of dual-antiplatelet therapy (DAPT) cessation within 12 months of drug-eluting stent implantation in caucasians and minorities. It is one of the first large trials to stress the importance of diversity in clinical trials, which tent to reflect a population of older white men.

 

Find more news and videos from TCT 2019

Hemodynamic Support Devices | October 16, 2019

Jeffrey J. Popma, M.D., director of interventional cardiology clinical services at Beth Israel Deaconess Medical Center, professor of medicine at Harvard Medical School, explains the results of the PROTECT II and the new PROTECT III Study at the 2019 Transcatheter Cardiovascular Therapeutics (TCT) meeting. PROTECT III is the follow up to PROTECT II RCT and the largest-ever FDA study of hemodynamically supported, high-risk PCI patients. 

He discusses the PROTECT II and PROTECT III studies, and real-life patient data from the Impella IQ Database. 

 

Find more news and videos from TCT 2019

Cardiac Imaging View all 233 items

Nuclear Imaging | November 07, 2019

Rob Beanlands, M.D., FASNC, 2019 American Society of Nuclear Cardiology (ASNC) president, shares a couple trends he sees in cardiac nuclear imaging. He is the Vered Chair and division head of cardiology and director of the National Cardiac PET Centre at the University of Ottawa Heart Institute, Canada.

He said overall trends he sees in nuclear cardiology include the use of better myocardial reserve quantification so it is clear whether revascularization would help patients. Beanlands also said there is increasing interest in positron emission tomography (PET) imaging because of its superior image quality and increasing access to PET radiotracers. New tracers on the horizon will also increase the image quality and flexibility of PET to accomodate exercise stress.

He spoke on artificial intelligence (AI) development for medical imaging in sessions at the 2019 American Society of Nuclear Cardiology (ASNC) annual meeting. 

Artificial Intelligence | November 07, 2019

Piotr J. Slomka, Ph.D., FACC, research scientist in the Artificial Intelligence in Medicine Program, Department of Medicine at Cedars-Sinai, and professor of medicine in-residence of the David Geffen School of Medicine, UCLA. He explains how his team at Cedars-Sinai is working on intelligent patient risk prediction algorithms that will automatically extract information from medical imaging. He spoke on artificial intelligence (AI) development for medical imaging in sessions at the 2019 American Society of Nuclear Cardiology (ASNC) annual meeting. 

Find more articles and video on AI

 

Nuclear Imaging | November 06, 2019

Robert C. Hendel, M.D., explains some of the new cardiac radiotracers in the pipeline that were discussed in sessions at the American Society of Nuclear Cardiology (ASNC) 2019 meeting. Hendel is a professor of medicine and radiology and the Sidney W. And Marilyn S. Lassen Chair in Cardiovascular Medicine, Tulane University. He also serves as the chief of the section of cardiology and director of the Tulane University Heart and Vascular Institute. 

He outlined three new radiotracers that may impact cardiac imaging:

   • Flurpiridaz F-18 PET perfusion agent that offers high quality images and can be used with exercise stress;

   • MIBG imaging to help better assess heart failure classes and if patients may need an ICD;

   • New F-18 agents to image cardiac amyloidosis; and

   • Nuclear agents to enable annexin imaging, allowing direct vsualization of myocardial apoptotic cells.

 

PET-CT | October 30, 2019

Rupa Sanghani, M.D., FASNC, associate professor, Rush Medical College, director of nuclear cardiology and stress laboratory, Rush University Medical Center, and associate director, Rush Heart Center for Women, explains how to create a high-volume cardiac positron emission tomography (PET) imaging program. She spoke on this topic at the 2019 meeting of the American Society Nuclear Cardiology (ASNC) and led a tour for attendees of the PET-CT system at Rush, which was located close to the conference. 

Sanghani said the advantages of PET myocardial perfusion imaging include faster exam times and allowing additional information from coronary reserve flow assessments to better understand if revascularization will help a patient's heart recover. The 16-slice CT scanner is used not only to attenuate the PET images, but to perform a CT calcium scoring exam to assess the patient's risk for future cardiovascular events. The Rubidium-82 radiotracer used for PET exams only has a 75 second half life, so it can help increase the number of exams a center is able to perform each day. At higher volume centers, PET is optimized to handle all the patients who require pharmacological stress exams. 

In the video, Sanghani  outlines what Rush did to design its room, covers basics on training, what to look for in a scanner and other considerations when creating a PET program.

Find more coverage of the ASNC

Find more news on nuclear imaging

 

 

Cardiac Diagnostics View all 58 items

Artificial Intelligence | November 07, 2019

Piotr J. Slomka, Ph.D., FACC, research scientist in the Artificial Intelligence in Medicine Program, Department of Medicine at Cedars-Sinai, and professor of medicine in-residence of the David Geffen School of Medicine, UCLA. He explains how his team at Cedars-Sinai is working on intelligent patient risk prediction algorithms that will automatically extract information from medical imaging. He spoke on artificial intelligence (AI) development for medical imaging in sessions at the 2019 American Society of Nuclear Cardiology (ASNC) annual meeting. 

Find more articles and video on AI

 

Cardiac Diagnostics | October 29, 2019

Clyde Yancy, M.D., MSc, cardiology chief and vice dean for diversity and inclusion at Northwestern University, Feinberg School of Medicine, was a keynote speaker at the 2019 American Society of Nuclear Cardiology (ASNC) annual meeting. He said the traditional biases of seeing a patient and automatically making clinical assumptions because they are a certain race or gender are obsolete. For example, he said not all black patients have hypertension. Yancy added that genetics, especially with racial intermarriage over the past several generations, no longer predisposes patients to what is typically assumed for certain ethnic or racial backgrounds.

Yancy also said new research is showing how diet plays a major role in patient health and disease progression for things previously thought to be based on genetics. This includes the people who live in "food deserts" in urban areas where there are no sources of fresh food and vegetables, so they consume large amounts of packaged and processed foods that contain high levels of salt, phosphates and preservatives. He said these chemicals and diet may be the root cause of hypertension and diabetes in black populations in low income areas, rather than genetics as previously thought.

 

Related Content: 

VIDEO: Reducing Hypertension Among African-Americans — Interview with Kim Allan Williams, Sr., M.D.

VIDEO: Use of Plant-Based Diet to Reduce Cardiovascular Disease Risk — Interview with Kim Allan Williams, Sr., M.D.

VIDEO: New PLATINUM Diversity Data Shows Early DAPT Cessation OK in Minorities With New Generation Stent — Interview with Roxana Mehran, M.D., 

 

CT Angiography (CTA) | August 08, 2019

This is an example of an automated calcium scoring software to speed review of coronary artery calcium (CAC) scoring cardiac computed tomography (CT) scans. This advanced visualization software from Ziosoft uses artificial intelligence to segment the coronary vessels, identify valves and the aorta and then color code tag the calcium deposits and quantify the amount of calcified plaque in each vessel. It tallies the score into a table and computes an overall Agatston risk score. This risk score correlates to that patient's risk for a heart attack in the future. The software notes calcium in the heart outside the coronaries in valve leaflets and the aorta, but excludes this data. This type of automation is now offered by most advanced visualization and CT system vendors. This automation can save a large amount of post-processing time and make it easier for hospitals to offer low-cost CAC CT screening programs. 

CAC scans can be used to determine if a patient needs to go on statin therapy. An Agatston score of zero means the patient has no risk of coronary disease. 

Calcium in arteries is a marker for damage caused by vessel wall inflammation from atherosclerosis. Calcium can form from previously ruptured necrotic, lipid core plaques, also referred to as vulnerable plaques. These are the types of plaque responsible for heart attacks. When the core of these plaques rupture, the blood reacts to the exposed core similar to a wound and begins to clot, forming a thrombus in the vessel, which can block the blood flow. When the vessel heals over time it calcifies, leaving behind an easily identifiable marker on CT imaging. 

This example of software was demonstrated on the expo floor at the 2019 Society of Cardiovascular Computed Tomography (SCCT) meeting. 

 

Related CT Calcium Scorining Content:

VIDEO: The History of CT Calcium Scoring — Interview with Arthur Agatston, M.D.

VIDEO: New Cholesterol Guidelines Support CT Calcium Scoring for Risk Assessment — Interview with Matthew Budoff, M.D.

CT Calcium Scoring Becoming a Key Risk Factor Assessment

ACC and AHA Release Updated Cholesterol Guidelines for 2018

VIDEO: CT Calcium Scoring to Screen For Who Should Take Statins — Interview with Matthew Budoff, M.D.

 

 

Cardiac Imaging | July 30, 2019

Nate Bachman, graduate research assistant in the Human Cardiovascular Physiology Lab of the Dept. of Health and Exercise Science at Colorado State University, describes how he and fellow researchers used multiple types of cardiac imaging to evaluate the cardiovascular health of athletes who compete in endurance events lasting six hours or more, and what the results may suggest for future screening.

EP Lab View all 59 items

Ablation Systems | September 26, 2019

Clifford Robinson, M.D., associate professor of radiation oncology, chief of the SBRT service, director of clinical trials, Washington University, St. Louis, Washington University School of Medicine in St. Louis, explains the longer term results of cardiac radiotherapy ablation to treat ventricular tachycardia

The results of the ENCORE-VT study were presented at ASTRO 2019.

EP Lab | July 26, 2019

Mark Ibrahim, M.D., FACC, assistant professor of medicine and radiology, associate program director, advanced cardiac imaging fellowship, University of Utah, explains what radiologists and cardiologists need to know what is needed from CT imaging prior to ablation procedures for atrial fibrillation (AF) and ventricular fibrillation (VF). He spoke at a joint session of the Heart Rhythm Society (HRS) and the Society of Cardiovascular Computed Tomography (SCCT) at the 2019 SCCT meeting. 

 

Find more SCCT news and videos

EP Lab | July 25, 2019

Pierre Qian, MBBS, cardiac electrophysiologist fellow, Brigham and Women's Hospital, explains how his facility is working with radiation oncology to use radio therapy to noninvasively ablate ventricular tachycardia (VT). He spoke on this topics during a joint electrophysiology session by the Heart Rhythm Society (HRS) and the Society of Cardiovascular Computed Tomography (SCCT) at the SCCT 2019 meeting.

Here is a link to another radiotherapy EP project Qian recently had published - A Novel Microwave Catheter Can Perform Noncontact Circumferential Endocardial Ablation in a Model of Pulmonary Vein Isolation

 

Find more SCCT news and videos

Atrial Fibrillation | June 21, 2019

Sanjaya Gupta, M.D., electrophysiologist, St. Luke's Mid America Heart Institute, and assistant professor, University of Missouri–Kansas City School of Medicine, explains how his center developed an artificial intelligence (AI) application to automatically risk stratify atrial fibrillation (AFib) patients. The Epic-based app stratifies patients into those who should be placed on anticoagulation and those who are candidates for left atrial appendage (LAA) occlusion. He spoke at the 2019 AI-Med Cardiology conference

His center hopes to develop similar guidelines based AI apps for other types of cardiac risk scoring. Gupta said he is looking for other centers to partner with to co-develop and test these AI apps.    

 

Related Cardiology AI Content:

VIDEO: Overview of Artificial Intelligence and its Use in Cardiology — Interview with Anthony Chang, M.D.

VIDEO: ACC Efforts to Advance Evidence-based Implementation of AI in Cardiovascular Care — Interview with John Rumsfeld, M.D.

VIDEO: Artificial Intelligence Applications for Cardiology — Interview with Anthony Chang, M.D.

PODCAST: Fitting Artificial Intelligence Into Cardiology — Interview with Anthony Chang, M.D.

VIDEO: How Hospitals Should Prepare for Artificial Intelligence Implementation — Interview with Paul Chang, M.D.

Technology Report: Artificial Intelligence 

Information Technology View all 135 items

Artificial Intelligence | November 07, 2019

Piotr J. Slomka, Ph.D., FACC, research scientist in the Artificial Intelligence in Medicine Program, Department of Medicine at Cedars-Sinai, and professor of medicine in-residence of the David Geffen School of Medicine, UCLA. He explains how his team at Cedars-Sinai is working on intelligent patient risk prediction algorithms that will automatically extract information from medical imaging. He spoke on artificial intelligence (AI) development for medical imaging in sessions at the 2019 American Society of Nuclear Cardiology (ASNC) annual meeting. 

Find more articles and video on AI

 

University of Colorado Hospital | October 02, 2019

Interview with John Carroll, M.D., director of interventional cardiology, Robert Quaife, M.D., director of advanced cardiac imaging, and James Chen, Ph.D., associate professor of medicine and director of the 3-D imaging lab at the Cardiac and Vascular Center at the University of Colorado Hospital. They discuss how the structural heart program was created and how they invested in advanced imaging to grow into one of the most advanced programs in the country. They explain how the program now incorporates transcatheter aortic valve replacement (TAVR), transcatheter mitral valve repair, transcatheter mitral valve replacement (TMVR), left atrial appendage (LAA) occlusion and transcatheter closure of holes in the heart. 

The heart team in this video stressed the need for advanced imaging to plan and guide the procedures. They explain how the center developed its own 3-D imaging software and worked with Philips healthcare to commercialize some of the technologies, including the EchoNavigator system used to fuse live angiography with live transesophageal echo (TEE).

 

Related University of Colorado Hospital Content:

Highlighting Innovation at the University of Colorado Hospital Cardiology Program

VIDEO: Evolution of Transcatheter Mitral Valve Repair at the University of Colorado — Interview with John Carroll, M.D., and Robert Quaife, M.D.

VIDEO: The Role of Advanced Imaging in Structural Heart Interventions — Interview with Robert Quaife, M.D.

VIDEO: Advice For Hospitals Starting a Structural Heart Program — Interview with John Carroll, M.D.

VIDEO: The Evolution of Complex PCI at University of Colorado — Interview with John Messenger, M.D., and Kevin Rogers, M.D.

VIDEO: Developing New Cath Lab Technologies With Real-time Collaboration Between Industry, Doctors

360 View of the TEE Echo Workstation During a MitraClip Procedure

VIDEO: Walk Through of a Hybrid Cath Lab at the University of Colorado Hospital

VIDEO: Cath Lab Walk Through at the University of Colorado Hospital

VIDEO: The Cardiac Surgeon Perspective on Transcatheter Mitral Valve Repair — Interview with Joe Cleveland, M.D.

VIDEO: An Overview of PFO Closure to Treat Cryptogenic Stroke — Interview with Karen Orjuela, M.D.,

 

(This video was originally posted in May 2019 and was updated Oct. 2, 2019)

 

Cath Lab | September 28, 2019

A discussion with Nicolas Bevins, Ph.D., vice chair, physics and research, and Jessica Harrington, RCIS. They explain the use of shields, technique and use of newer angiography technologies to reduce X-ray radiation dose in the cardiac cath labs at Henry Ford Hospital, Detroit.

Watch the VIDEO: Technologies and Techniques to Reduce Radiation Dose in the Cardiac Cath Lab — Interview with Akshay Khandelwal, M.D., director of medical operations at the Henry Ford Heart and Vascular Institute

Additional articles and videos on Henry Ford Hospital 

 

For more on how to reduce dose in the cath lan, read these related articles:

Cardiology Societies Call for Better Radiation Dose Tracking

Defining the Cath Lab Workplace Radiation Safety Hazard

Dose-Lowering Practices for Cath Lab Angiography

5 Technologies to Reduce Cath Lab Radiation Exposure

VIDEO: Heart Surgeon Shares Effects of Fluoroscopic Radiation Exposure

Helping Interventional Cardiologists Reduce Exposure to Ionizing Radiation

14 Ways to Reduce Radiation Exposure in the Cath Lab

 

(Editor's note - this video was originally published in September 2018 and was revised September 2019)

September 27, 2019

Akshay Khandelwal, M.D., director of medical operations at the Henry Ford Heart and Vascular Institute, Detroit, and associate professor of cardiology at Wayne State University, explains how his center has reduced X-ray radiation dose in the cardiac catheterization labs.

Watch the related VIDEO: Reducing Cath Lab Radiation Dose at Henry Ford Hospital — Discussion with Nicolas Bevins, Ph.D., vice chair, physics and research, and Jessica Harrington, RCIS, Henry Ford Hospital.

Additional articles and videos on Henry Ford Hospital 

 

For more on how to reduce dose in the cath lan, read these related articles:

Cardiology Societies Call for Better Radiation Dose Tracking

Defining the Cath Lab Workplace Radiation Safety Hazard

Dose-Lowering Practices for Cath Lab Angiography

5 Technologies to Reduce Cath Lab Radiation Exposure

VIDEO: Heart Surgeon Shares Effects of Fluoroscopic Radiation Exposure

Helping Interventional Cardiologists Reduce Exposure to Ionizing Radiation

14 Ways to Reduce Radiation Exposure in the Cath Lab

 

(Editor's note - this video was originally published in November 2018 and was revised September 2019)

 

Overlay Init