Feature | September 06, 2013| Steven L. Higgins, M.D., FHRS

Integrating Fluoroscopy Into 3-D Mapping Reduces Radiation During Catheter Ablation

New technology to help reduce X-ray dose during long EP procedures

Carto 3, Biosense Webster, CartoUnivu

Figure 1. The Carto 3 System generates real-time 3-D maps and allows visualization of catheters in the cardiac anatomy during catheter ablation procedures.

Figure 2. The CartoUnivu module integrates a static fluoroscopic image with a 3-D map generated from the Carto 3 System, enabling a seamless view of the cardiac structures.

Nationwide data show that although only about 12 percent of X-ray exams are for interventional cardiology or electrophysiology (EP) procedures, nearly 50 percent of a patient’s lifetime radiation exposure comes from the cardiovascular labs. In an effort to reduce this level of patient radiation exposure, Scripps Prebys Cardiovascular Institute, part of Scripps Memorial Hospital and Scripps Green Hospital, evaluated Biosense Webster’s CartoUnivu module for the Carto 3 System (Figure 1) before it was made commercially available earlier this year. Researchers looked for its potential benefits in reducing radiation exposure to patients and clinical staff. 
 
Methods
The CartoUnivu module provides for fixed fluoroscopic images or cines to be transferred to the 3-D electro-anatomic mapping system. The module allows for real-time visualization of intracardiac catheters against a background of a stored fluoroscopic image (Figure 2). Typically, multiple fluoroscopic images (three to eight) are acquired at different angulations and stored. Once transferred, the fluoro image is integrated into the 3-D map view, allowing the user to create an electo-anatomical map on top of the captured fluoroscopic image or looping cine. Not only does this proved fluoroscopic images for reference, our electrophysiologists consistently commented that it diminished the interest in confirming catheter location with additional fluoroscopy.
 
Researchers performed a retrospective evaluation of the impact of this new technology on radiation usage. We reviewed our first 31 CartoUnivu cases from two EP laboratories and compared the procedure and fluoroscopy times to 96 procedures for six months using traditional mapping and fluoroscopy methods, matched by operator (total of eight). The 137 patients included in the study were referred for either pulmonary vein isolation (PVI) procedures for atrial fibrillation (18 study, 51 controls), cavotricuspid isthmus block for atrial flutter (8 study, 33 controls), supraventricular tachycardia ablation, either atrioventricular nodal reentrant tachycardia (AVNRT) or Wolff–Parkinson–White syndrome (WPW) (six study, 23 controls) or ventricular tachycardia (VT) (three study, six controls). The study was approved by the Scripps Institutional Review Board; all data was de-identified for confidentiality.
 
Results
Cumulative for all procedures, researchers found that the average procedure duration for the CartoUnivu module assisted studies was 254±31 minutes versus 267±85 for the retrospective control group (p=NS). However, the average fluoroscopy times for the CartoUnivu studies were 22±19 minutes versus 60±27 minutes for the comparison group (p<.0001). The fluoroscopy dosage was 1,453 cGy/cm² for the CartoUnivu module versus 3,593 cGy/cm² in controls (p<.0001). The average reduction in fluoroscopy time was 64 percent and dosage 60 percent with the CartoUnivu approach.
 
The retrospective comparison has limitations as the new focus on reduced radiation usage impacted physician behavior with the new CartoUnivu module. Nevertheless, once mastered, the learning curve inherent with the new system would suggest an opportunity to further diminish radiation usage. Researchers evaluated the findings by operator and procedure. Every operator (n=8) has lower radiation usage with the CartoUnivu module. The radiation reduction was observed in all ablation procedures, though it was more pronounced in the complex cases (PVI and VT).
 
Conclusion
In a non-randomized retrospective review, researchers found a statistically significant 64 percent reduction in fluoroscopy times and 60 percent in dosages (p<.0001) for EP ablation procedures utilizing the CartoUnivu module fluoroscopic integration system as compared to traditional fluoroscopy supplemented with similar 3-D mapping. The availability of a fluoroscopic image to be stored and superimposed into the 3-D electro-anatomic mapping system resulted in less need for fluoroscopic confirmation of landmarks and catheter positions. They predict that this CartoUnivu module will reduce physician dependence on fluoroscopic imaging and thus diminish radiation exposure for patients, physicians and staff. If these data are confirmed, patient safety will be positively impacted by this new technology.
 
Editor’s note: Steven L. Higgins, M.D., FHRS, chairman, department of cardiology, director of electrophysiology, Scripps Memorial Hospital, La Jolla, Calif. He is a paid consultant to Biosense Webster. The Scripps Prebys Cardiovascular Institute combines the expertise of Scripps Memorial Hospital and Scripps Green Hospital, with a skilled team of nearly 100 cardiologists. Scripps was recently designated as No. 20 in the U.S. News Top-Ranked Hospitals for cardiology and heart surgery.

Related Content

Computer Simulations May Treat Most Common Heart Rhythm Disorder

The OPTIMA (Optimal Target Identification via Modelling of Arrhythmogenesis) simulator uses contrast-enhanced MRI scans to create personalized digital replicas of a patient's heart to guide catheter abation for atrial fibrillation. Image courtesy of Patrick M. Boyle and Natalia A. Trayanova.

News | EP Mapping and Imaging Systems | August 19, 2019
Scientists at Johns Hopkins have successfully created personalized digital replicas of the upper chambers of the heart...
Charge Density Mapping Eliminates Repeat Ablation for Atrial Fibrillation at One Year
News | EP Mapping and Imaging Systems | July 15, 2019
Acutus Medical announced the publication of the UNCOVER AF study in Circulation: Arrhythmia and Electrophysiology. The...
Innovative Health Receives FDA Clearance to Reprocess Pentaray Nav Eco High-density Mapping Catheter
News | EP Mapping and Imaging Systems | July 05, 2019
Single-use cardiology medical device reprocessing company Innovative Health, received U.S. Food and Drug Administration...
VIVO 3-D Cardiac Mapping System Cleared by FDA
Technology | EP Mapping and Imaging Systems | July 01, 2019
Catheter Precision Inc. announced that the U.S. Food and Drug Administration (FDA) has cleared its new VIVO (View into...
Algorithm Steers Catheters to Right Spot to Treat Atrial Fibrillation

Using human AFib simulations, the researchers demonstrated that their technique can stop the catheter at the right target and identify the source type with a 95.25 percent success rate. This new algorithm also is effective in scarred tissue, which makes ablation more challenging, and has a 99 percent detection rate regardless of the scar size. Image courtesy of Florida Atlantic University.

News | EP Mapping and Imaging Systems | May 28, 2019
Researchers have developed the first algorithm that can locate patient-specific ablation targets for atrial...
Acutus Medical Announces Rhythm Xience Acquisition, New Partnerships at HRS 2019

Acutus Medical's acquisition of Rhythm Xience brings the Flextra steerable introducer sheath into Acutus Medical's product portfolio.

News | EP Mapping and Imaging Systems | May 17, 2019
At the 40th annual Heart Rhythm Scientific Sessions, May 8-11 in San Francisco, Acutus Medical announced the agreement...
Electromechanical Wave Imaging (EWI) is a new, high-frame rate 3-D rendered ultrasound technique that can noninvasively map the electromechanical activation of heart rhythm. This example shows the ECG tracings compared to the EWI image of the heart.

Electromechanical Wave Imaging (EWI) is a new, high-frame rate 3-D rendered ultrasound technique that can noninvasively map the electromechanical activation of heart rhythm. This example shows the ECG tracings compared to the EWI image of the heart.

Feature | EP Mapping and Imaging Systems | May 15, 2019 | Dave Fornell, Editor
May 15, 2019 — A new study shows electromechanical wave imaging is capable of localizing arrhythmias including atrial
Philips and Medtronic Collaborate on Image-guided Atrial Fibrillation Treatment
News | EP Mapping and Imaging Systems | May 09, 2019
Philips announced a collaboration with Medtronic to further advance treatment of paroxysmal atrial fibrillation (PAF),...
Acutus Medical Receives FDA Clearance for Second-generation AcQMap Platform
Technology | EP Mapping and Imaging Systems | April 26, 2019
Acutus Medical announced U.S. Food and Drug Administration (FDA) clearance of its second-generation AcQMap platform,...
Acutus AcQMap Imaging System Helps Eliminate Arrhythmia With Single Ablation
News | EP Mapping and Imaging Systems | January 28, 2019
Acutus Medical announced 12-month data from the UNCOVER-AF trial investigating the use of the AcQMap advanced cardiac...
Overlay Init