Feature | July 15, 2011| Dave Fornell

Intra-Cardiac Echo Aids EP Ablations, Structural Heart Procedures

Users say ICE offers more versatile imaging than TEE and will play a key role in transcatheter valve replacements

Catheter-based intra-cardiac echocardiography (ICE) is an imaging modality similar to intra-vascular ultrasound (IVUS). It allows imaging inside the heart to visualize cardiac structures and blood flow using Doppler imaging. The standard-of-care for this type of imaging is usually transesophageal echo (TEE), but ICE proponents say the intra-cardiac modality has several advantages.


The image quality is comparable to TEE, but the real advantage is the cardiologist controls the catheter instead of a sonographer, eliminating a second operator, explains Jay Lee, medical director of electophysiology (EP) at Hoag Heart and Vascular Institute, Newport Beach, Calif. He said ICE also provides more versatility than the limited view provided by TEE, because the catheter can be maneuvered to see more inside the heart and the aortic root. Unlike TEE, ICE does not require general anesthesia.


ICE has applications for structural heart imaging of the left atrial appendage (LAA), to aid in septal defect closures and visualizing the fossa ovalis, and plays a role in transcatheter valve replacement. It also is used in EP procedures for ablation catheter guidance.


EP Guidance
Lee primarily uses ICE for transcatheter EP ablations to treat atrial fibrillation (aFib), ventricular tachycardias and the pulmonary vein. In EP transcatheter ablation procedures, ICE confirms the exact location of the catheter tip to aid with more accurate ablations. ICE also can  help with safety monitoring of the pericardial space for tamponade or pericardial effusion caused in rare cases by either the transeptal puncture or the ablation, Lee said.


“It’s a wonderful tool to help us guide our procedures more accurately,” Lee said. “We also have found some new areas for ICE in the EP lab…I find it very useful with access and safety. We also find it useful for treating ventricular tachycardias.”
Hoag uses the Carto EP mapping system, which is compatible with Siemens’ ICE system. GE, Boston Scientific and St. Jude also offer ICE systems.


“It’s very practical when we are performing aFib catheterizations, because it offers real-time imaging of the heart,” Lee said.
He uses a transeptal puncture to feed the imaging catheter into the atrium he is ablating. Lee says a transeptal puncture is safer than other entry options, and used the ICE catheter to visualize exactly where the transeptal puncture is made.
The ICE system is used to create a map of the pulmonary artery and the atriums, and can help create a 3-D map of the ventricular anatomy, including details of the papillary muscles.  


ICE Catheters
Single element rotational (also referred to as radial) imaging catheters offer a similar view as IVUS and are good for close-up, near-field imaging, Lee said. Phased array ICE catheters allow side-fire, wedge-shaped images that are similar to conventional ultrasound imaging. Lee said phased array catheters offer better far-field imaging.


From his experience, Lee said rotational imaging offers about 2 cm field-of-view (FOV) of clear imaging (Boston Scientific says its system images up to 14 cm), which is good for the septum and the fossa ovalis. But due to the limited FOV, he said most EP labs will find phased array systems more useful, with vendors claiming imaging depths of up to 30 cm.


Boston Scientific’s Ultra ICE system uses radial ICE imaging, which is not steerable and is limited to 2-D imaging. The Siemens, GE and St. Jude systems are steerable and offer 2-D, color and spectral Doppler capabilities.


These catheters cost a couple thousand dollars each, which has led to resistance to widespread adoption, Lee said.


The Future of ICE
Lee said ICE works in tandem with EP mapping systems now, but further integration in the future will lead to more procedural accuracy. Mapping systems can import computed tomography (CT) images to use as a map of the heart, but the image is not in real time. Lee expects future systems to allow registration of the echo image with the mapping system for live imaging.


ICE is expected to become increasingly important to better guide an increasing number of transcatheter ablation procedures. Once transcatheter aortic and mitral valve heart valve replacement and LAA occlusion devices gain U.S. Food and Drug Administration (FDA) clearance, ICE is expected to see increased use for the accurate deployment of these devices.   
 

Related Content

First Carto Vizigo Bi-Directional Guiding Sheath Employed on West Coast
News | EP Mapping and Imaging Systems | October 29, 2018
October 29, 2018 — Good Samaritan Hospital recently became the first hospital on the West Coast to utilize the Carto
BioSig Technologies Announces FDA 510(k) Clearance for Pure EP System
Technology | EP Mapping and Imaging Systems | August 14, 2018
BioSig Technologies Inc. announced that the company received 510(k) clearance for its first product, Pure EP System,...
Volta Medical Brings Artificial Intelligence to Cardiac Electrophysiology

Image courtesy of Intermountain Medical Center Heart Institute

News | EP Mapping and Imaging Systems | June 12, 2018
Volta Medical, out of Marseille, France, has developed the first artificial intelligence (AI) software to guide...
APN Health Releases Navik 3D Cardiac Mapping System
Technology | EP Mapping and Imaging Systems | May 03, 2018
May 3, 2018 — APN Health LLC announced its Navik 3D...
Abbott Announces European Launch of Advisor HD Grid Mapping Catheter, Sensor Enabled
Technology | EP Mapping and Imaging Systems | January 19, 2018
Abbott last week announced CE Mark approval for the company's new Advisor HD Grid Mapping Catheter, Sensor Enabled, a...
Videos | EP Mapping and Imaging Systems | October 24, 2017
This video, provided by Acutus Medical, demonstrates a patient case showing the use of the AcQMap high-resolution ele
Acutus Medical Receives FDA Clearance for AcQMap Cardiac Mapping Technology
Technology | EP Mapping and Imaging Systems | October 24, 2017
Acutus Medical announced that the U.S. Food and Drug Administration (FDA) has cleared the AcQMap High Resolution...
Acutus Medical Announces Completion of Enrollment for UNCOVER AF Study
News | EP Mapping and Imaging Systems | May 02, 2017
Acutus Medical recently announced that enrollment has been completed in its pivotal Utilizing Novel Dipole Density...
Videos | EP Mapping and Imaging Systems | February 01, 2017
This video, provided by Medtronic, demonstrates the CardioInsight electro-anatomical mapping system.
Overlay Init