News | October 13, 2009

Duke University Creates Living Heart Patch for Infarct Repair

October 13, 2009 – By mimicking the way embryonic stem cells develop into heart muscle in a lab, Duke University bioengineers believe they have taken an important first step toward growing a living heart patch to repair heart tissue damaged by disease.

In a series of experiments using mouse embryonic stem cells, the bioengineers used a novel mold of their own design to fashion a three-dimensional patch made up of heart muscle cells, known as cardiomyocytes. The new tissue exhibited the two most important attributes of heart muscle cells – the ability to contract and to conduct electrical impulses. The mold looks much like a piece of Chex cereal in which researchers varied the shape and length of the pores to control the direction and orientation of the growing cells.

The researchers grew the cells in an environment much like that found in natural tissues. They encapsulated the cells within a gel composed of the blood-clotting protein fibrin, which provided mechanical support to the cells, allowing them to form a three-dimensional structure. They also found that the cardiomyocytes flourished only in the presence of a class of helper cells known as cardiac fibroblasts, which comprise as much as 60 percent of all cells present in a human heart.

“If you tried to grow cardiomyocytes alone, they develop into an unorganized ball of cells,” said Brian Liau, graduate student in biomedical engineering at Duke’s Pratt School of Engineering. Liau, who works in the laboratory of assistant professor Nenad Bursac, presented the results of his latest experiments during the annual scientific sessions of the Biomedical Engineering Society in Pittsburgh.

“We found that adding cardiac fibroblasts to the growing cardiomyocytes created a nourishing environment that stimulated the cells to grow as if they were in a developing heart,” Liau said. “When we tested the patch, we found that because the cells aligned themselves in the same direction, they were able to contract like native cells. They were also able to carry the electrical signals that make cardiomyocytes function in a coordinated fashion.”

“The addition of fibroblasts in our experiments provided signals that we believe are present in a developing embryo,” Liau said. The need for helper cells is not uncommon in mammalian development. For example, he explained, nerve cells need “sheathe” cells known as glia in order to develop and function properly.

Bursac believes that the latest experiments represent a proof-of-principle advance, but said there are still many hurdles to overcome before such patches could be implanted into humans with heart disease.

“While we were able to grow heart muscle cells that were able to contract with strength and carry electric impulses quickly, there are many other factors that need to be considered,” Bursac said. “The use of fibrin as a structural material allowed us to grow thicker, three-dimensional patches, which would be essential for the delivery of therapeutic doses of cells. One of the major challenges then would be establishing a blood vessel supply to sustain the patch.”

The researchers plan to test their model using nonembryonic stem cells. For use in humans, this is important for many reasons, both scientifically and ethically, Bursac said. Recent studies have demonstrated that some cells from human adults have the ability to be reprogrammed to become similar to embryonic stem cells.

“Human cardiomyocytes tend to grow a lot slower than those of mice,” Bursac said. “Since it takes nine months for the human heart to complete development, we need to find a way to get the cells to grow faster while maintaining the same essential properties of native cells.”

If they could use a patient’s own cells, the patch would also evade an immune system reaction, Bursac added.

The research was supported by National Institutes of Health, the National Heart Lung Blood Institute and Duke’s Stem Cell Innovation program. Other Duke members of the research team were Weining Bian and Nicolas Christoforou.

For more information: www.stemcell.duke.edu

Related Content

New Jersey Researcher Exploring New Stem Cell Therapies for Heart Attacks
News | Stem Cell Therapies| August 04, 2017
In petri dishes in her campus laboratory at New Jersey Institute of Technology, Alice Lee is developing colonies of...
SanBio Receives $20 Million Grant for Stroke Clinical Trial
News | Stroke| July 12, 2017
July 12, 2017 — SanBio Inc.

An example of porcine cartdiac stem cells. Photo from the University of Miami Miller School of Medicine.

 

News | Stem Cell Therapies| June 12, 2017
June 12, 2017 — Heart muscle is one of the least renewable tissues in the body, which is one of the reasons that hear
Stem Cell Therapy Holds Promise for Treating Most Severe Cases of Angina
News | Stem Cell Therapies| May 12, 2017
An analysis of data from the entire development program consisting of three trials assessing the feasibility of using a...
3-D Printed Patch Can Help Mend a ‘Broken’ Heart

This photo shows the 3D-bioprinted cell patch in comparison to a mouse heart. When the patch was placed on a live mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Image courtesy of Patrick O’Leary, University of Minnesota.

News | Stem Cell Therapies| April 18, 2017
April 18, 2017 — A team of biomedical engineering researchers, led by the University of Minnesota, has created a revo
Texas Heart Institute, ischemic heart failure, adult stem cell therapy, CONCERT-HF clinical trial
News | Stem Cell Therapies| February 03, 2017
Physicians and researchers at Texas Heart Institute are recruiting patients who suffer from heart failure to...
ischemic heart failure, stem cell therapy, MSCs, CSCs, Minneapolis Heart Institute Foundation, MHIF study
News | Heart Failure| January 10, 2017
Ischemic heart failure from previous heart attacks and coronary artery disease is the leading cause of death in the...
News | Stem Cell Therapies| January 09, 2017
BioCardia Inc. announced in December the issuance of United States Patent No. 9,517,199 relating to a method of...
News | Stem Cell Therapies| January 03, 2017
January 3, 2017 — BioCardia Inc. announced in December the initiation of the CardiAMP Heart Failure pivotal trial, a
Overlay Init