Videos | Cardiovascular Ultrasound | August 17, 2021

VIDEO: Examples of Dynamic Blood Flow Imaging in Cardiac Ultrasound

A new ultrasound imaging technology that may offer novel ways to diagnose and better understand cardiac diseases using dynamic blood flow imaging. This allows imaging of individual blood cells or contrast bubbles as they travel through the heart and vessels, showing detail in how the blood moves and swirls. These motions, including the formation of vortices, may offer new insight into different disease states and allow earlier diagnosis and a understand better when to intervene.

The examples shown in this short video are from Hitachi and GE Healthcare, both of which have highlighted this technology at the American Society of Echocardiography (ASE) annual meetings over the past four years.

Ultrasound vendors use different technology approaches, including vector flow imaging, particle imaging velocimetry and blood speckle tracking. All of them show small lines or arrows to indicate the direction the blood cells or bubbles are traveling, and color codes to indicate velocity. Some vendors offer quantification for some new measures of blood flow, but as of yet, there are no guidelines or standardized indexes as to what these numbers mean.

This technology has been discussed in research sessions at the IEEE and the ASE over the past several years. However, more research is needed to show the prognostic value of the technology. Research to date shows it is possible that the swirling of blood can indicate less efficient flow, which may have implications in the development of heart failure, pulmonary hypertension and advancement of valvular disease. In the coronary arteries, research has shown there may be a connection between sheer stresses and disrupted blood flow in the formation of plaques on artery walls.

Companies that have developed echo blood flow dynamics imaging on their ultrasound systems to date include Hitachi, GE Healthcare, Fujifilm, Mindray and BK Medical. 

Read more about this technology from ASE 2021 in the article Development of Echo Blood Flow Dynamics Imaging.
 

Related Dynamic Blood Flow Echo Imaging Content:

Aurora St. Luke’s Medical Center in Milwaukee Adopts Latest Echocardiography Imaging Software

A Glimpse Into the Future of Cardiac Ultrasound

Analogic Introduces New Premium Cardiac Imaging Software for bk3500 Ultrasound System

Improving Stent Designs With Computational Fluid Dynamics

VIDEO: Editor's Choice of Most Innovative New Cardiac Ultrasound Technology at ASE 2017

699 Views

Recent Videos View all 638 items

Cardiovascular Ultrasound | July 20, 2022

Enhanced features on the Philips EPIQ CVx ultrasound system provide a next level photorealistic 3D rendering, making it easy for users to interpret what they are seeing. The TrueVue feature enhances the sense of depth and space, producing images that appear natural and realistic to the human eye.  

Watch the video to check out how TrueVue can help improve views of LAA and MV morphology. 

Cardiovascular Ultrasound | July 07, 2022

Automated features on the Philips EPIQ CVx cardiology ultrasound system are helping to bring consistency and speed to every echo exam. The AI-empowered algorithm delivers fast and consistent measurements – in half the time of manual methods.*  

Watch the video to see how you can put “smart”  to work with the latest AI-powered quantification tools. 

*External study with external sonographers comparing the results of 18 exams with and without AutoMeasure

Cardiovascular Ultrasound | June 14, 2022

The X5-1c transducer from Philips provides enhanced clinical information in transthoracic imaging over a standard phased array transducer. When combined with nSIGHT Plus image formation on the EPIQ CVx cardiology ultrasound system, the X5-1c transducer enables image quality rarely seen from a transthoracic transducer. 

Watch the video to learn about the benefits which may include decreased exam time due to faster access to echo windows, increased confidence in quantification results and more. 

Cardiovascular Ultrasound | May 31, 2022

Philips recently announced an update to their flagship EPIQ CVx premium cardiology ultrasound system. Watch the video to learn about the latest features including the next-generation nSIGHT Plus imaging architecture system that leverages both hardware and software to support sophisticated image formation and enhanced image quality.

Sponsored Videos View all 46 items

Cardiovascular Ultrasound | July 20, 2022

Enhanced features on the Philips EPIQ CVx ultrasound system provide a next level photorealistic 3D rendering, making it easy for users to interpret what they are seeing. The TrueVue feature enhances the sense of depth and space, producing images that appear natural and realistic to the human eye.  

Watch the video to check out how TrueVue can help improve views of LAA and MV morphology. 

Cardiovascular Ultrasound | July 07, 2022

Automated features on the Philips EPIQ CVx cardiology ultrasound system are helping to bring consistency and speed to every echo exam. The AI-empowered algorithm delivers fast and consistent measurements – in half the time of manual methods.*  

Watch the video to see how you can put “smart”  to work with the latest AI-powered quantification tools. 

*External study with external sonographers comparing the results of 18 exams with and without AutoMeasure

Cardiovascular Ultrasound | June 14, 2022

The X5-1c transducer from Philips provides enhanced clinical information in transthoracic imaging over a standard phased array transducer. When combined with nSIGHT Plus image formation on the EPIQ CVx cardiology ultrasound system, the X5-1c transducer enables image quality rarely seen from a transthoracic transducer. 

Watch the video to learn about the benefits which may include decreased exam time due to faster access to echo windows, increased confidence in quantification results and more. 

Cardiovascular Ultrasound | May 31, 2022

Philips recently announced an update to their flagship EPIQ CVx premium cardiology ultrasound system. Watch the video to learn about the latest features including the next-generation nSIGHT Plus imaging architecture system that leverages both hardware and software to support sophisticated image formation and enhanced image quality.

Conference Coverage View all 455 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

Cath Lab View all 316 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

Cardiac Imaging View all 286 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

Cardiac Diagnostics View all 78 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

EP Lab View all 82 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

Information Technology View all 167 items

Cardiac Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, explains why the society did not endorse the first-ever U.S. or international guideline for the evaluation and diagnosis of patients with acute or stable chest pain.

Nuclear myocardial perfusion imaging (MPI) has been a gold-standard for evaluation of coronary disease in patients for years, and it is included in the new guidelines. However, computed tomography angiography (CTA) has seen immense growth over the past decade and gained a prominent position in the guidelines as a front line imaging modality. This is due to nearly all hospital emergency rooms now having access to CT systems capable of performing immediate cardiac exams. CT has been seen mainly as an anatomical imaging test, but it also can be used for myocardial perfusion imaging using iodine contrast. While CT has had limits with its ability to image through heavily calcified vessels or stents, that is changing with new CT technologies now coming into service.

One new CT technology that is prominently included I the new chest pain guidelines is CT fractional flow reserve (FFR-CT) imaging.  This uses a computational fluid dynamics algorithm to analyze a patient's CTA. It sends back a report and an interactive 3D reconstruction of all the coronary vessels that shows a color coded drop in FFR ratios, which is a measure of blood flow. Past a certain threshold, the reduced flow needs to be treated with revascularization. Lower level blockages can be treated with drug therapies. FFR-CT is widely expected in the coming years to become a gate keeper for invasive diagnostic angiograms. The hope is it will eliminate the need for the majority of cath lab angiogram exams and only send patients to the lab that need a stent or angioplasty. 

However, the ASNC had major issues with FFR-CT being included in the chest pain guidelines. Its board members argued there is need for more evidence and there should have been more information contraindications for its use, which was included on other imaging modalities in the guidelines. They also argued access to the technology has been very limited. Calnon explains more detail in the video on why this was a sticking point and caused the ASNC to not endorse the guidelines.

Read more in the article — First International Chest Pain Diagnosis Guidelines Released

Nuclear Imaging | February 01, 2022

American Society of Nuclear Cardiology (ASNC) President Dennis Calnon, M.D., MASNC, FASE, FSCCT, director of cardiac imaging for McConnell Heart Hospital at Riverside Methodist Hospital, and director of nuclear imaging for Ohio Health Heart and Vascular Physicians in Columbus, offers a concise overview of new technologies that are enhancing cardiac nuclear imaging. He also explains some of the new developments and uses for PET and SPECT imaging technology.

Find more nuclear imaging technology news

 

Artificial Intelligence | January 13, 2022

Here are two examples of artificial intelligence (AI) driven pulmonary embolism (PE) response team apps featured by vendors Aidoc and Viz.AI at the 2021 Radiological Society of North America (RSNA) 2021 meeting.

The AI scans computed tomography (CT) image datasets as they came off the imaging system and looked for evidence of PE. If detected by the algorithm, it immediately sends an alert to the stroke care team members via smartphone messaging. This is done before the images are even loaded into the PACS. The radiologist on the team can use a link on the app to open the CT dataset and has basic tools for scrolling, windowing and leveling to determine if there is a PE and the severity. The team can then use the app to send messages, access patient information, imaging and reports. This enabled them all to be on the same page and can communicate quickly via mobile devices, rather than being required to use dedicated workstations in the hospital. 

Both vendors showed similar apps for stroke at RSNA 2019. That idea for rapid alerts, diagnosis and communications for acute care teams has now expanded to PE and also for aortic dissection and abdominal aortic aneurysms (AAA). AI.Viz and Aidoc are looking at expanding this type of technology for other acute care team rolls, including heart failure response. 

Read more about this technology in the article AI Can Facilitate Automated Activation of Pulmonary Embolism Response Teams.

Find more AI news

Find more RSNA news and video

 

 

Coronavirus (COVID-19) | December 14, 2021

Jean Jeudy, M.D., professor of radiology and vice chair of informatics at the University of Maryland School of Medicine, presented a late-breaking study at the 2021 Radiological Society of North America (RSNA) meeting on COVID-19 linked myocarditis in college athletes. 

A small but significant percentage of college athletes with COVID-19 develop myocarditis, a potentially dangerous inflammation of the heart muscle, that can only be seen on cardiac MRI, according to the study Jeudy presented. Myocarditis, which typically occurs as a result of a bacterial or viral infection, can affect the heart’s rhythm and ability to pump and often leaves behind lasting damage in the form of scarring to the heart muscle. It has been linked to as many as 20% of sudden deaths in young athletes. The COVID-19 pandemic raised concerns over an increased incidence of the condition in student-athletes.

For the new study, clinicians at schools in the highly competitive Big Ten athletic conference collaborated to collect data on the frequency of myocarditis in student-athletes recovering from COVID-19 infection. Conference officials had required all athletes who had COVID-19 to get a series of cardiac tests before returning to play, providing a unique opportunity for researchers to collect data on the athletes’ cardiac status.

Jeudy serves as the cardiac MRI core leader for the Big Ten Cardiac Registry. This registry oversaw the collection of all the data from the individual schools of the Big Ten conference. He reviewed the results of 1,597 cardiac MRI exams collected at the 13 participating schools. 

Thirty-seven of the athletes, or 2.3%, were diagnosed with COVID-19 myocarditis, a percentage on par with the incidence of myocarditis in the general population. However, an alarmingly high proportion of the myocarditis cases were found in athletes with no clinical symptoms. Twenty of the patients with COVID-19 myocarditis (54%) had neither cardiac symptoms nor cardiac testing abnormalities. Only cardiac MRI identified the problem.

Read more details in the article COVID-19 Linked to Heart Inflammation in College Athletes.

Related COVID-19 Imaging and Myocarditis Content:

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine

COVID-19 Linked to Heart Inflammation in College Athletes — RSNA 2021 late-breaker

VIDEO: Cardiac MRI Assessment of Non-ischemic Myocardial Inflammation Caused by COVID-19 Vaccinations — Interview with Kate Hanneman, M.D.

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents

Large International Study Reveals Spectrum of COVID-19 Brain Complications - RSNA 2021 late-breaker

COVID-19 During Pregnancy Doesn’t Harm Baby’s Brain

VIDEO: Large Radiology Study Reveals Spectrum of COVID-19 Brain Complications — Interview with Scott Faro, M.D.

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination

Subscribe Now