News | Stem Cell Therapies | June 12, 2017

Research Reveals New Insights Into Why Heart Does Not Repair Itself

An example of porcine cartdiac stem cells. Photo from the University of Miami Miller School of Medicine.

 

June 12, 2017 — Heart muscle is one of the least renewable tissues in the body, which is one of the reasons that heart disease is the leading cause of death for both men and women in the United States, according to the Centers for Disease Control and Prevention. Inspired by the idea of helping the heart repair itself, researchers at Baylor College of Medicine and the Texas Heart Institute have studied pathways known to be involved in heart cell functions and discovered a previously unknown connection between processes that keep the heart from repairing itself. This finding, published in the journal Nature, opens the possibility of developing strategies that will promote heart cell renewal in the future.

“We are investigating the question of why the heart muscle doesn’t renew,” said senior author James Martin, M.D., professor and Vivian L. Smith Chair in Regenerative Medicine at Baylor College of Medicine. “In this study, we focused on two pathways of cardiomyocytes or heart cells: the Hippo pathway, which is involved in stopping renewal of adult cardiomyocytes, and the dystrophin glycoprotein complex (DGC) pathway, essential for cardiomyocyte normal functions. We are also interested in studying mutations in DGC components because patients with these mutations have a muscle wasting disease called muscular dystrophy.”

Previous work had hinted that components of the DGC pathway may somehow interact with members of the Hippo pathway. In this study, Martin and colleagues studied the consequences of this interaction in animal models. The researchers genetically engineered mice to lack genes involved in one or both pathways, and then determined the ability of the heart to repair an injury. These studies showed for the first time that dystroglycan 1, a component of the DGC pathway, directly binds to Yap, part of the Hippo pathway, and that this interaction inhibited cardiomyocyte proliferation.

“The discovery that the Hippo and the DGC pathways connect in the cardiomyocyte and that together they act as ‘brakes,’ or stop signals to cell proliferation, opens the possibility that by disrupting this interaction one day it might be possible to help adult cardiomyocytes proliferate and heal injuries caused by a heart attack, for example,” Martin said.

Another long-term application of this discovery could be to improve cardiac function in children with muscular dystrophy.

“Patients with muscular dystrophy can have severe reduction in cardiac function,” Martin said. “Our findings may help to design medicines to slow down cardiac decline in muscular dystrophy by stimulating cardiomyocyte proliferation. In order to do that, we need more research to understand cardiomyocyte growth control pathways in greater detail.”

Other contributors to this work include Yuka Morikawa, Todd Heallen, John Leach and Yang Xiao.

This project was supported in part by an Intellectual and Developmental Disability Research Center grant (1U54 HD083092) from the Eunice Kennedy Shriver National Institute of Child Health and Human Development; the Mouse Phenotyping Core at Baylor College of Medicine with funding from the National Institutes of Health (U54 HG006348); and grants from the National Institutes of Health (DE 023177, HL 127717, HL 130804, and HL 118761) and the Vivian L. Smith Foundation. Support was also provided by the Transatlantic Network of Excellence Award LeDucq Foundation Transatlantic Networks of Excellence in Cardiovascular Research 14CVD01 and the American Heart Association Scientist Development Grant 16SDG26460001.

For more information: www.bcm.edu/news

Related Content

Edwards Inspiris Resilia Valve Receives FDA Approval
News | Heart Valve Technology| September 21, 2017
Edwards Lifesciences Corp. recently received U.S. Food and Drug Administration (FDA) approval for its Inspiris Resilia...
Sentinel Cerebral Protection System Significantly Reduces Stroke and Mortality in TAVR
News | Embolic Protection Devices| September 18, 2017
September 18, 2017 – Claret Medical announced publication of a new study in the...
Sponsored Content | Videos | Structural Heart Occluders| September 13, 2017
Ziyad Hijazi, M.D., MPH, MSCAI, FACC, director of the cardiac program and chair of the Department of Pediatrics at Si
TCT 2017 late-breaking trials and studies that will be presented on the latest cardiology technology clinical trials.
Feature | September 11, 2017
September 11, 2017 — From numerous high-quality submissions, Transcatheter Cardiovascular Therapeutics (TCT) has sele
LAA closure during open heart surgery in the LAACS Study showed better outcomes for all patients.

LAA closure during open heart surgery in the LAACS Study showed better outcomes for all patients.

Feature | Left Atrial Appendage (LAA) Occluders| September 07, 2017
September 7, 2017 — Closure of the left atrial appendage (LAA) during heart surgery protects the brain, according to
Protembis Announces Successful First-in-Human Use of  ProtEmbo Cerebral Protection System in European Trial
News | Embolic Protection Devices| September 07, 2017
Protembis GmbH announced the first clinical applications of its ProtEmbo Cerebral Protection System to complement a...
Siemens Healthineers Receives FDA Clearance for TrueFusion Structural Heart Disease Feature
Technology | Cardiovascular Ultrasound| September 06, 2017
The U.S. Food and Drug Administration (FDA) has cleared TrueFusion, a new cardiovascular application from Siemens...
Minneapolis Heart Institute Foundation Enrolls First Patient in TRILUMINATE Tricuspid Repair Trial
News | Heart Valve Technology| September 05, 2017
Minneapolis Heart Institute Foundation announced it has enrolled the first-in-the-world patient in a clinical study to...
Abbott Initiates U.S. Pivotal Study of Amplatzer Device for Patent Ductus Arteriosus
News | Congenital Heart| September 05, 2017
Abbott announced it has initiated a U.S. pivotal clinical study evaluating the safety and effectiveness of a modified...
World's First Successful 52-mm Transcatheter Tricuspid Valve Implantation Completed in Italy
News | Heart Valve Technology| August 31, 2017
NaviGate Cardiac Structures Inc. (NCSI) announced that its Gate catheter-guided tricuspid atrioventricular valved stent...
Overlay Init