Feature | May 07, 2015

Gene Therapy Clips Out Mutations Causing Heart Failure

Research team introduces modified stem cells to interrupt pathways leading to heart failure

gene therapy, stem cells, heart failure, mutations, Mount Sinai, Hajjar

May 7, 2015 — Gene therapy can clip out genetic material linked to heart failure and replace it with normal genes, according to a study from the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai. The study is published in the April 29 edition of Nature Communications.

“Genetic mutations — the small random, changes in the genetic code making up genes — are major culprits in the weakening heart muscle seen in patients with heart failure,” said Roger J. Hajjar, M.D., director of the Cardiovascular Research Center of Mount Sinai Heart at Icahn School of Medicine at Mount Sinai. “Our study results reveal that specific forms of heart failure can now be targeted by a new kind of gene therapy that acts as ‘molecular scissors,’ cutting out the mutation and inserting the normal genetic code in its place.”

Cardiomyopathies are diseases of weakened heart muscle, which can lead to heart enlargement and heart failure. The conditions are often genetically inherited. A number of inherited gene mutations have been associated with cardiomyopathies, including mutations in the phospholamban (PLN) gene, which is a critical regulator of healthy cardiac cell function and its calcium cycling. Calcium is a critical mineral for heart muscle cells to properly contract and pump blood from the heart to the rest of the body.

The R14del mutation within the PLN gene has been identified in a number of families with genetic heart failure. The mutation is linked to dilated heart muscle, dysfunctional heart muscle contraction, dangerous arrhythmias and the development of heart failure by middle age.

In the study, the research team collected skin cell samples from a heart failure patient who has the R14del mutation. The skin cells from the patient were then transformed in the laboratory to become induced pluripotent stem cells (iPSCs). These stem cells, which carry the genetics of the heart failure patient, were then differentiated from the skin cells into specialized heart muscle cells called cardiomyocytes (iPSC-CMs), which also carry the patient’s genetic history.

Examination of these beating cardiac cells in a laboratory dish confirmed R14del mutation causes common abnormalities linked to heart failure including: improper pumping of calcium within cell compartments, which can lead to enlargement of heart muscle tissue; electrical instability, which can cause arrhythmias; and molecular markers, which can lead to thickening of the heart muscle.

To correct the gene mutation in cardiomyocytes, researchers successfully used two novel methods. First, they used a specifically designed transcription activator-like effector nucleases called TALENs to target and eliminate the presence of R14del-associated disease in cardiac cells. This genome engineering technique cut out the diseased gene and replaced it with a normal PLN gene, resulting in normally functioning cardiomyocytes.

Secondly, they used an adeno-associated viral-vector (AAV) gene therapy approach with the harmful part of a virus removed to safely target the inside of cardiac cells. This approach knocks down the abnormal PLN gene in cardiac cells while simultaneously expressing a normal PLN gene, successfully reversing disease. This method works within the diseased cardiac cells to suppress the expression of the diseased gene and express normal PLN proteins. This gene therapy approach also corrected the functional abnormalities of the cardiac cells.

“Our findings offer potentially new strategies to target and interrupt the disease causing path of the mutation associated with cardiomyopathies and heart failure,” said Hajjar. “Having now corrected this heart failure gene abnormality in human cardiac cells, our research will move forward to further test this approach in vivo in animal and pre-clinical studies. We look forward to eventually testing this gene therapy approach one day to correct the gene abnormality in heart failure patients."

“This is a major breakthrough in molecular medicine and paves the way for future studies in personalized therapy for heart failure patients aiming to specifically correct their defective genes,” said study co-author Litsa Kranias, Ph.D., of the University of Cincinnati, who first discovered the PLN gene R14del mutation in a Greek family.

“This finding has a huge impact for patients with inherited cardiac disease in the Netherlands as around 10 percent of our patients with dilated or arrhythmogenic cardiomyopathy carry this particular founder mutation,” said Folkert W. Asselbergs, M.D., Ph.D., FESC, Department of Cardiology, Division Heart & Lungs University Medical Center in Utrecht, Netherlands. Asselbergs provided cardiac cell samples of PLN R14del patients for the research team. The Netherlands population has a high prevalence of this mutation.

For more information: www.mountsinai.org

Related Content

Secant Introduces First Synthetic Regenerative Cardiovascular Graft for CABG
News | Stem Cell Therapies | January 17, 2018
Secant Group, in partnership with its sister company SanaVita Medical, announced new technology to advance...
News | Stem Cell Therapies | October 24, 2017
October 24, 2017 — Roche and Ncardia have reached a broad licensing agreement whereby Roche and its affiliate compani
BioCardia Announces 12-Month Results from TRIDENT Trial of Stem Cell Delivery System
News | Stem Cell Therapies | September 26, 2017
BioCardia Inc. recently announced 12-month results from the Phase II TRIDENT clinical trial, conducted by the...
New Jersey Researcher Exploring New Stem Cell Therapies for Heart Attacks
News | Stem Cell Therapies | August 04, 2017
In petri dishes in her campus laboratory at New Jersey Institute of Technology, Alice Lee is developing colonies of...

An example of porcine cartdiac stem cells. Photo from the University of Miami Miller School of Medicine.

 

News | Stem Cell Therapies | June 12, 2017
June 12, 2017 — Heart muscle is one of the least renewable tissues in the body, which is one of the reasons that hear
Stem Cell Therapy Holds Promise for Treating Most Severe Cases of Angina
News | Stem Cell Therapies | May 12, 2017
An analysis of data from the entire development program consisting of three trials assessing the feasibility of using a...
3-D Printed Patch Can Help Mend a ‘Broken’ Heart

This photo shows the 3D-bioprinted cell patch in comparison to a mouse heart. When the patch was placed on a live mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Image courtesy of Patrick O’Leary, University of Minnesota.

News | Stem Cell Therapies | April 18, 2017
April 18, 2017 — A team of biomedical engineering researchers, led by the University of Minnesota, has created a revo
Texas Heart Institute, ischemic heart failure, adult stem cell therapy, CONCERT-HF clinical trial
News | Stem Cell Therapies | February 03, 2017
Physicians and researchers at Texas Heart Institute are recruiting patients who suffer from heart failure to...
News | Stem Cell Therapies | January 09, 2017
BioCardia Inc. announced in December the issuance of United States Patent No. 9,517,199 relating to a method of...
Overlay Init